open-webui/backend/open_webui/routers/openai.py

1249 lines
44 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import asyncio
import hashlib
import json
import logging
from typing import Optional
import aiohttp
from aiocache import cached
import requests
from urllib.parse import quote
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from fastapi import Depends, HTTPException, Request, APIRouter
from fastapi.responses import (
FileResponse,
StreamingResponse,
JSONResponse,
PlainTextResponse,
)
from pydantic import BaseModel
from starlette.background import BackgroundTask
from open_webui.models.models import Models
from open_webui.config import (
CACHE_DIR,
)
from open_webui.env import (
MODELS_CACHE_TTL,
AIOHTTP_CLIENT_SESSION_SSL,
AIOHTTP_CLIENT_TIMEOUT,
AIOHTTP_CLIENT_TIMEOUT_MODEL_LIST,
ENABLE_FORWARD_USER_INFO_HEADERS,
BYPASS_MODEL_ACCESS_CONTROL,
)
from open_webui.models.users import UserModel
from open_webui.memory.cross_window_memory import last_process_payload
from open_webui.utils.misc import extract_timestamped_messages
from open_webui.constants import ERROR_MESSAGES
from open_webui.env import SRC_LOG_LEVELS
from open_webui.utils.payload import (
apply_model_params_to_body_openai,
apply_system_prompt_to_body,
)
from open_webui.utils.misc import (
convert_logit_bias_input_to_json,
)
from open_webui.utils.auth import get_admin_user, get_verified_user
from open_webui.utils.access_control import has_access
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["OPENAI"])
##########################################
#
# Utility functions
#
##########################################
async def send_get_request(url, key=None, user: UserModel = None):
timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT_MODEL_LIST)
try:
async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session:
async with session.get(
url,
headers={
**({"Authorization": f"Bearer {key}"} if key else {}),
**(
{
"X-OpenWebUI-User-Name": quote(user.name, safe=" "),
"X-OpenWebUI-User-Id": user.id,
"X-OpenWebUI-User-Email": user.email,
"X-OpenWebUI-User-Role": user.role,
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user
else {}
),
},
ssl=AIOHTTP_CLIENT_SESSION_SSL,
) as response:
return await response.json()
except Exception as e:
# Handle connection error here
log.error(f"Connection error: {e}")
return None
async def cleanup_response(
response: Optional[aiohttp.ClientResponse],
session: Optional[aiohttp.ClientSession],
):
if response:
response.close()
if session:
await session.close()
def openai_reasoning_model_handler(payload):
"""
Handle reasoning model specific parameters
"""
if "max_tokens" in payload:
# Convert "max_tokens" to "max_completion_tokens" for all reasoning models
payload["max_completion_tokens"] = payload["max_tokens"]
del payload["max_tokens"]
# Handle system role conversion based on model type
if payload["messages"][0]["role"] == "system":
model_lower = payload["model"].lower()
# Legacy models use "user" role instead of "system"
if model_lower.startswith("o1-mini") or model_lower.startswith("o1-preview"):
payload["messages"][0]["role"] = "user"
else:
payload["messages"][0]["role"] = "developer"
return payload
async def get_headers_and_cookies(
request: Request,
url,
key=None,
config=None,
metadata: Optional[dict] = None,
user: UserModel = None,
):
cookies = {}
headers = {
"Content-Type": "application/json",
**(
{
"HTTP-Referer": "https://openwebui.com/",
"X-Title": "CyberLover",
}
if "openrouter.ai" in url
else {}
),
**(
{
"X-OpenWebUI-User-Name": quote(user.name, safe=" "),
"X-OpenWebUI-User-Id": user.id,
"X-OpenWebUI-User-Email": user.email,
"X-OpenWebUI-User-Role": user.role,
**(
{"X-OpenWebUI-Chat-Id": metadata.get("chat_id")}
if metadata and metadata.get("chat_id")
else {}
),
}
if ENABLE_FORWARD_USER_INFO_HEADERS
else {}
),
}
token = None
auth_type = config.get("auth_type")
if auth_type == "bearer" or auth_type is None:
# Default to bearer if not specified
token = f"{key}"
elif auth_type == "none":
token = None
elif auth_type == "session":
cookies = request.cookies
token = request.state.token.credentials
elif auth_type == "system_oauth":
cookies = request.cookies
oauth_token = None
try:
if request.cookies.get("oauth_session_id", None):
oauth_token = await request.app.state.oauth_manager.get_oauth_token(
user.id,
request.cookies.get("oauth_session_id", None),
)
except Exception as e:
log.error(f"Error getting OAuth token: {e}")
if oauth_token:
token = f"{oauth_token.get('access_token', '')}"
elif auth_type in ("azure_ad", "microsoft_entra_id"):
token = get_microsoft_entra_id_access_token()
if token:
headers["Authorization"] = f"Bearer {token}"
if config.get("headers") and isinstance(config.get("headers"), dict):
headers = {**headers, **config.get("headers")}
return headers, cookies
def get_microsoft_entra_id_access_token():
"""
Get Microsoft Entra ID access token using DefaultAzureCredential for Azure OpenAI.
Returns the token string or None if authentication fails.
"""
try:
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
return token_provider()
except Exception as e:
log.error(f"Error getting Microsoft Entra ID access token: {e}")
return None
##########################################
#
# API routes
#
##########################################
router = APIRouter()
@router.get("/config")
async def get_config(request: Request, user=Depends(get_admin_user)):
return {
"ENABLE_OPENAI_API": request.app.state.config.ENABLE_OPENAI_API,
"OPENAI_API_BASE_URLS": request.app.state.config.OPENAI_API_BASE_URLS,
"OPENAI_API_KEYS": request.app.state.config.OPENAI_API_KEYS,
"OPENAI_API_CONFIGS": request.app.state.config.OPENAI_API_CONFIGS,
}
class OpenAIConfigForm(BaseModel):
ENABLE_OPENAI_API: Optional[bool] = None
OPENAI_API_BASE_URLS: list[str]
OPENAI_API_KEYS: list[str]
OPENAI_API_CONFIGS: dict
@router.post("/config/update")
async def update_config(
request: Request, form_data: OpenAIConfigForm, user=Depends(get_admin_user)
):
request.app.state.config.ENABLE_OPENAI_API = form_data.ENABLE_OPENAI_API
request.app.state.config.OPENAI_API_BASE_URLS = form_data.OPENAI_API_BASE_URLS
request.app.state.config.OPENAI_API_KEYS = form_data.OPENAI_API_KEYS
# Check if API KEYS length is same than API URLS length
if len(request.app.state.config.OPENAI_API_KEYS) != len(
request.app.state.config.OPENAI_API_BASE_URLS
):
if len(request.app.state.config.OPENAI_API_KEYS) > len(
request.app.state.config.OPENAI_API_BASE_URLS
):
request.app.state.config.OPENAI_API_KEYS = (
request.app.state.config.OPENAI_API_KEYS[
: len(request.app.state.config.OPENAI_API_BASE_URLS)
]
)
else:
request.app.state.config.OPENAI_API_KEYS += [""] * (
len(request.app.state.config.OPENAI_API_BASE_URLS)
- len(request.app.state.config.OPENAI_API_KEYS)
)
request.app.state.config.OPENAI_API_CONFIGS = form_data.OPENAI_API_CONFIGS
# Remove the API configs that are not in the API URLS
keys = list(map(str, range(len(request.app.state.config.OPENAI_API_BASE_URLS))))
request.app.state.config.OPENAI_API_CONFIGS = {
key: value
for key, value in request.app.state.config.OPENAI_API_CONFIGS.items()
if key in keys
}
return {
"ENABLE_OPENAI_API": request.app.state.config.ENABLE_OPENAI_API,
"OPENAI_API_BASE_URLS": request.app.state.config.OPENAI_API_BASE_URLS,
"OPENAI_API_KEYS": request.app.state.config.OPENAI_API_KEYS,
"OPENAI_API_CONFIGS": request.app.state.config.OPENAI_API_CONFIGS,
}
@router.post("/audio/speech")
async def speech(request: Request, user=Depends(get_verified_user)):
idx = None
try:
idx = request.app.state.config.OPENAI_API_BASE_URLS.index(
"https://api.openai.com/v1"
)
body = await request.body()
name = hashlib.sha256(body).hexdigest()
SPEECH_CACHE_DIR = CACHE_DIR / "audio" / "speech"
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")
# Check if the file already exists in the cache
if file_path.is_file():
return FileResponse(file_path)
url = request.app.state.config.OPENAI_API_BASE_URLS[idx]
key = request.app.state.config.OPENAI_API_KEYS[idx]
api_config = request.app.state.config.OPENAI_API_CONFIGS.get(
str(idx),
request.app.state.config.OPENAI_API_CONFIGS.get(url, {}), # Legacy support
)
headers, cookies = await get_headers_and_cookies(
request, url, key, api_config, user=user
)
r = None
try:
r = requests.post(
url=f"{url}/audio/speech",
data=body,
headers=headers,
cookies=cookies,
stream=True,
)
r.raise_for_status()
# Save the streaming content to a file
with open(file_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
with open(file_body_path, "w") as f:
json.dump(json.loads(body.decode("utf-8")), f)
# Return the saved file
return FileResponse(file_path)
except Exception as e:
log.exception(e)
detail = None
if r is not None:
try:
res = r.json()
if "error" in res:
detail = f"External: {res['error']}"
except Exception:
detail = f"External: {e}"
raise HTTPException(
status_code=r.status_code if r else 500,
detail=detail if detail else "CyberLover: Server Connection Error",
)
except ValueError:
raise HTTPException(status_code=401, detail=ERROR_MESSAGES.OPENAI_NOT_FOUND)
async def get_all_models_responses(request: Request, user: UserModel) -> list:
if not request.app.state.config.ENABLE_OPENAI_API:
return []
# Check if API KEYS length is same than API URLS length
num_urls = len(request.app.state.config.OPENAI_API_BASE_URLS)
num_keys = len(request.app.state.config.OPENAI_API_KEYS)
if num_keys != num_urls:
# if there are more keys than urls, remove the extra keys
if num_keys > num_urls:
new_keys = request.app.state.config.OPENAI_API_KEYS[:num_urls]
request.app.state.config.OPENAI_API_KEYS = new_keys
# if there are more urls than keys, add empty keys
else:
request.app.state.config.OPENAI_API_KEYS += [""] * (num_urls - num_keys)
request_tasks = []
for idx, url in enumerate(request.app.state.config.OPENAI_API_BASE_URLS):
if (str(idx) not in request.app.state.config.OPENAI_API_CONFIGS) and (
url not in request.app.state.config.OPENAI_API_CONFIGS # Legacy support
):
request_tasks.append(
send_get_request(
f"{url}/models",
request.app.state.config.OPENAI_API_KEYS[idx],
user=user,
)
)
else:
api_config = request.app.state.config.OPENAI_API_CONFIGS.get(
str(idx),
request.app.state.config.OPENAI_API_CONFIGS.get(
url, {}
), # Legacy support
)
enable = api_config.get("enable", True)
model_ids = api_config.get("model_ids", [])
if enable:
if len(model_ids) == 0:
request_tasks.append(
send_get_request(
f"{url}/models",
request.app.state.config.OPENAI_API_KEYS[idx],
user=user,
)
)
else:
model_list = {
"object": "list",
"data": [
{
"id": model_id,
"name": model_id,
"owned_by": "openai",
"openai": {"id": model_id},
"urlIdx": idx,
}
for model_id in model_ids
],
}
request_tasks.append(
asyncio.ensure_future(asyncio.sleep(0, model_list))
)
else:
request_tasks.append(asyncio.ensure_future(asyncio.sleep(0, None)))
responses = await asyncio.gather(*request_tasks)
for idx, response in enumerate(responses):
if response:
url = request.app.state.config.OPENAI_API_BASE_URLS[idx]
api_config = request.app.state.config.OPENAI_API_CONFIGS.get(
str(idx),
request.app.state.config.OPENAI_API_CONFIGS.get(
url, {}
), # Legacy support
)
connection_type = api_config.get("connection_type", "external")
prefix_id = api_config.get("prefix_id", None)
tags = api_config.get("tags", [])
model_list = (
response if isinstance(response, list) else response.get("data", [])
)
if not isinstance(model_list, list):
# Catch non-list responses
model_list = []
for model in model_list:
# Remove name key if its value is None #16689
if "name" in model and model["name"] is None:
del model["name"]
if prefix_id:
model["id"] = (
f"{prefix_id}.{model.get('id', model.get('name', ''))}"
)
if tags:
model["tags"] = tags
if connection_type:
model["connection_type"] = connection_type
log.debug(f"get_all_models:responses() {responses}")
return responses
async def get_filtered_models(models, user):
# Filter models based on user access control
filtered_models = []
for model in models.get("data", []):
model_info = Models.get_model_by_id(model["id"])
if model_info:
if user.id == model_info.user_id or has_access(
user.id, type="read", access_control=model_info.access_control
):
filtered_models.append(model)
return filtered_models
@cached(
ttl=MODELS_CACHE_TTL,
key=lambda _, user: f"openai_all_models_{user.id}" if user else "openai_all_models",
)
async def get_all_models(request: Request, user: UserModel) -> dict[str, list]:
log.info("get_all_models()")
if not request.app.state.config.ENABLE_OPENAI_API:
return {"data": []}
responses = await get_all_models_responses(request, user=user)
def extract_data(response):
if response and "data" in response:
return response["data"]
if isinstance(response, list):
return response
return None
def merge_models_lists(model_lists):
log.debug(f"merge_models_lists {model_lists}")
merged_list = []
for idx, models in enumerate(model_lists):
if models is not None and "error" not in models:
merged_list.extend(
[
{
**model,
"name": model.get("name", model["id"]),
"owned_by": "openai",
"openai": model,
"connection_type": model.get("connection_type", "external"),
"urlIdx": idx,
}
for model in models
if (model.get("id") or model.get("name"))
and (
"api.openai.com"
not in request.app.state.config.OPENAI_API_BASE_URLS[idx]
or not any(
name in model["id"]
for name in [
"babbage",
"dall-e",
"davinci",
"embedding",
"tts",
"whisper",
]
)
)
]
)
return merged_list
models = {"data": merge_models_lists(map(extract_data, responses))}
log.debug(f"models: {models}")
request.app.state.OPENAI_MODELS = {model["id"]: model for model in models["data"]}
return models
@router.get("/models")
@router.get("/models/{url_idx}")
async def get_models(
request: Request, url_idx: Optional[int] = None, user=Depends(get_verified_user)
):
models = {
"data": [],
}
if url_idx is None:
models = await get_all_models(request, user=user)
else:
url = request.app.state.config.OPENAI_API_BASE_URLS[url_idx]
key = request.app.state.config.OPENAI_API_KEYS[url_idx]
api_config = request.app.state.config.OPENAI_API_CONFIGS.get(
str(url_idx),
request.app.state.config.OPENAI_API_CONFIGS.get(url, {}), # Legacy support
)
r = None
async with aiohttp.ClientSession(
trust_env=True,
timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT_MODEL_LIST),
) as session:
try:
headers, cookies = await get_headers_and_cookies(
request, url, key, api_config, user=user
)
if api_config.get("azure", False):
models = {
"data": api_config.get("model_ids", []) or [],
"object": "list",
}
else:
async with session.get(
f"{url}/models",
headers=headers,
cookies=cookies,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
) as r:
if r.status != 200:
# Extract response error details if available
error_detail = f"HTTP Error: {r.status}"
res = await r.json()
if "error" in res:
error_detail = f"External Error: {res['error']}"
raise Exception(error_detail)
response_data = await r.json()
# Check if we're calling OpenAI API based on the URL
if "api.openai.com" in url:
# Filter models according to the specified conditions
response_data["data"] = [
model
for model in response_data.get("data", [])
if not any(
name in model["id"]
for name in [
"babbage",
"dall-e",
"davinci",
"embedding",
"tts",
"whisper",
]
)
]
models = response_data
except aiohttp.ClientError as e:
# ClientError covers all aiohttp requests issues
log.exception(f"Client error: {str(e)}")
raise HTTPException(
status_code=500, detail="CyberLover: Server Connection Error"
)
except Exception as e:
log.exception(f"Unexpected error: {e}")
error_detail = f"Unexpected error: {str(e)}"
raise HTTPException(status_code=500, detail=error_detail)
if user.role == "user" and not BYPASS_MODEL_ACCESS_CONTROL:
models["data"] = await get_filtered_models(models, user)
return models
class ConnectionVerificationForm(BaseModel):
url: str
key: str
config: Optional[dict] = None
@router.post("/verify")
async def verify_connection(
request: Request,
form_data: ConnectionVerificationForm,
user=Depends(get_admin_user),
):
url = form_data.url
key = form_data.key
api_config = form_data.config or {}
async with aiohttp.ClientSession(
trust_env=True,
timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT_MODEL_LIST),
) as session:
try:
headers, cookies = await get_headers_and_cookies(
request, url, key, api_config, user=user
)
if api_config.get("azure", False):
# Only set api-key header if not using Azure Entra ID authentication
auth_type = api_config.get("auth_type", "bearer")
if auth_type not in ("azure_ad", "microsoft_entra_id"):
headers["api-key"] = key
api_version = api_config.get("api_version", "") or "2023-03-15-preview"
async with session.get(
url=f"{url}/openai/models?api-version={api_version}",
headers=headers,
cookies=cookies,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
) as r:
try:
response_data = await r.json()
except Exception:
response_data = await r.text()
if r.status != 200:
if isinstance(response_data, (dict, list)):
return JSONResponse(
status_code=r.status, content=response_data
)
else:
return PlainTextResponse(
status_code=r.status, content=response_data
)
return response_data
else:
async with session.get(
f"{url}/models",
headers=headers,
cookies=cookies,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
) as r:
try:
response_data = await r.json()
except Exception:
response_data = await r.text()
if r.status != 200:
if isinstance(response_data, (dict, list)):
return JSONResponse(
status_code=r.status, content=response_data
)
else:
return PlainTextResponse(
status_code=r.status, content=response_data
)
return response_data
except aiohttp.ClientError as e:
# ClientError covers all aiohttp requests issues
log.exception(f"Client error: {str(e)}")
raise HTTPException(
status_code=500, detail="CyberLover: Server Connection Error"
)
except Exception as e:
log.exception(f"Unexpected error: {e}")
raise HTTPException(
status_code=500, detail="CyberLover: Server Connection Error"
)
def get_azure_allowed_params(api_version: str) -> set[str]:
allowed_params = {
"messages",
"temperature",
"role",
"content",
"contentPart",
"contentPartImage",
"enhancements",
"dataSources",
"n",
"stream",
"stop",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"function_call",
"functions",
"tools",
"tool_choice",
"top_p",
"log_probs",
"top_logprobs",
"response_format",
"seed",
"max_completion_tokens",
}
try:
if api_version >= "2024-09-01-preview":
allowed_params.add("stream_options")
except ValueError:
log.debug(
f"Invalid API version {api_version} for Azure OpenAI. Defaulting to allowed parameters."
)
return allowed_params
def is_openai_reasoning_model(model: str) -> bool:
return model.lower().startswith(("o1", "o3", "o4", "gpt-5"))
def convert_to_azure_payload(url, payload: dict, api_version: str):
model = payload.get("model", "")
# Filter allowed parameters based on Azure OpenAI API
allowed_params = get_azure_allowed_params(api_version)
# Special handling for o-series models
if is_openai_reasoning_model(model):
# Convert max_tokens to max_completion_tokens for o-series models
if "max_tokens" in payload:
payload["max_completion_tokens"] = payload["max_tokens"]
del payload["max_tokens"]
# Remove temperature if not 1 for o-series models
if "temperature" in payload and payload["temperature"] != 1:
log.debug(
f"Removing temperature parameter for o-series model {model} as only default value (1) is supported"
)
del payload["temperature"]
# Filter out unsupported parameters
payload = {k: v for k, v in payload.items() if k in allowed_params}
url = f"{url}/openai/deployments/{model}"
return url, payload
@router.post("/chat/completions")
async def generate_chat_completion(
request: Request,
form_data: dict,
user=Depends(get_verified_user),
bypass_filter: Optional[bool] = False,
chatting_completion: bool = False
):
"""
OpenAI 兼容的聊天完成端点 - 直接转发请求到 OpenAI API 或兼容服务
这是 OpenAI router 中的底层 API 调用函数,负责:
1. 应用模型配置base_model_id, system prompt, 参数覆盖)
2. 验证用户权限(模型访问控制)
3. 处理 Azure OpenAI 特殊格式转换
4. 处理推理模型reasoning model特殊逻辑
5. 转发 HTTP 请求到上游 API支持流式和非流式
Args:
request: FastAPI Request 对象
form_data: OpenAI 格式的聊天请求
- model: 模型 ID
- messages: 消息列表
- stream: 是否流式响应
- temperature, max_tokens 等参数
user: 已验证的用户对象
bypass_filter: 是否绕过权限检查
Returns:
- 流式: StreamingResponse (SSE)
- 非流式: dict (OpenAI JSON 格式)
Raises:
HTTPException 403: 无权限访问模型
HTTPException 404: 模型不存在
HTTPException 500: 上游 API 连接失败
"""
# print("user:", user)
# user:
# id='55f85fb0-4aca-48bc-aea1-afce50ac989e'
# name='gaofeng1'
# email='h.summit1628935449@gmail.com'
# username=None
# role='user'
# profile_image_url=''
# bio=None
# gender=None
# date_of_birth=None
# info=None
# settings=UserSettings(ui={'memory': True})
# api_key=None
# oauth_sub=None
# last_active_at=1763997832
# updated_at=1763971141
# created_at=1763874812
# === 1. 权限检查配置 ===
if BYPASS_MODEL_ACCESS_CONTROL:
bypass_filter = True
idx = 0 # 用于标识使用哪个 OPENAI_API_BASE_URL
# === 2. 准备 Payload 和提取元数据 ===
payload = {**form_data}
metadata = payload.pop("metadata", None) # 移除内部元数据,不发送给上游 API
model_id = form_data.get("model")
model_info = Models.get_model_by_id(model_id)
# === 3. 应用模型配置和权限检查 ===
# Check model info and override the payload
if model_info:
# 3.1 如果配置了 base_model_id替换为底层模型 ID
# 例如:自定义模型 "my-gpt4" → 实际调用 "gpt-4-turbo"
if model_info.base_model_id:
payload["model"] = model_info.base_model_id
model_id = model_info.base_model_id
# 3.2 应用模型参数temperature, max_tokens 等)
params = model_info.params.model_dump()
if params:
system = params.pop("system", None) # 提取 system prompt
# 应用模型参数到 payload覆盖用户传入的参数
payload = apply_model_params_to_body_openai(params, payload)
# 注入或替换 system prompt
payload = apply_system_prompt_to_body(system, payload, metadata, user)
# 3.3 权限检查:验证用户是否有权限访问该模型
# Check if user has access to the model
if not bypass_filter and user.role == "user":
if not (
user.id == model_info.user_id # 用户是模型创建者
or has_access(
user.id, type="read", access_control=model_info.access_control
) # 或用户在访问控制列表中
):
raise HTTPException(
status_code=403,
detail="Model not found",
)
elif not bypass_filter:
# 如果模型信息不存在且未绕过过滤器,只有管理员可访问
if user.role != "admin":
raise HTTPException(
status_code=403,
detail="Model not found",
)
# === 4. 查找 OpenAI API 配置 ===
await get_all_models(request, user=user) # 刷新模型列表
model = request.app.state.OPENAI_MODELS.get(model_id)
if model:
idx = model["urlIdx"] # 获取 API 基础 URL 索引
else:
raise HTTPException(
status_code=404,
detail="Model not found",
)
# === 5. 获取 API 配置并处理 prefix_id ===
# Get the API config for the model
api_config = request.app.state.config.OPENAI_API_CONFIGS.get(
str(idx),
request.app.state.config.OPENAI_API_CONFIGS.get(
request.app.state.config.OPENAI_API_BASE_URLS[idx], {}
), # Legacy support
)
# 移除模型 ID 前缀(如果配置了 prefix_id
# 例如:模型 ID "custom.gpt-4" → 发送给 API 的是 "gpt-4"
prefix_id = api_config.get("prefix_id", None)
if prefix_id:
payload["model"] = payload["model"].replace(f"{prefix_id}.", "")
# === 6. Pipeline 模式:注入用户信息 ===
# Add user info to the payload if the model is a pipeline
if "pipeline" in model and model.get("pipeline"):
payload["user"] = {
"name": user.name,
"id": user.id,
"email": user.email,
"role": user.role,
}
url = request.app.state.config.OPENAI_API_BASE_URLS[idx]
key = request.app.state.config.OPENAI_API_KEYS[idx]
# === 7. 推理模型特殊处理 ===
# Check if model is a reasoning model that needs special handling
if is_openai_reasoning_model(payload["model"]):
# 推理模型(如 o1使用 max_completion_tokens 而非 max_tokens
payload = openai_reasoning_model_handler(payload)
elif "api.openai.com" not in url:
# 非 OpenAI 官方 API向后兼容将 max_completion_tokens 转为 max_tokens
# Remove "max_completion_tokens" from the payload for backward compatibility
if "max_completion_tokens" in payload:
payload["max_tokens"] = payload["max_completion_tokens"]
del payload["max_completion_tokens"]
# 避免同时存在 max_tokens 和 max_completion_tokens
if "max_tokens" in payload and "max_completion_tokens" in payload:
del payload["max_tokens"]
# === 8. 转换 logit_bias 格式 ===
# Convert the modified body back to JSON
if "logit_bias" in payload:
payload["logit_bias"] = json.loads(
convert_logit_bias_input_to_json(payload["logit_bias"])
)
# === 9. 准备请求头和 Cookies ===
headers, cookies = await get_headers_and_cookies(
request, url, key, api_config, metadata, user=user
)
# === 10. Azure OpenAI 特殊处理 ===
if api_config.get("azure", False):
api_version = api_config.get("api_version", "2023-03-15-preview")
request_url, payload = convert_to_azure_payload(url, payload, api_version)
# 只有在非 Azure Entra ID 认证时才设置 api-key header
# Only set api-key header if not using Azure Entra ID authentication
auth_type = api_config.get("auth_type", "bearer")
if auth_type not in ("azure_ad", "microsoft_entra_id"):
headers["api-key"] = key
headers["api-version"] = api_version
request_url = f"{request_url}/chat/completions?api-version={api_version}"
else:
# 标准 OpenAI 兼容 API
request_url = f"{url}/chat/completions"
if chatting_completion:
try:
# 可选钩子:在发送到上游前记录/审计 payload需自行实现 last_process_payload
log.debug(
f"chatting_completion hook user={user.id} chat_id={metadata.get('chat_id')} model={payload.get('model')}"
)
except Exception as e:
log.debug(f"chatting_completion 钩子执行失败: {e}")
payload = json.dumps(payload) # 序列化为 JSON 字符串
# === 11. 初始化请求状态变量 ===
r = None
session = None
streaming = False
response = None
try:
# === 12. 发起 HTTP 请求到上游 API ===
session = aiohttp.ClientSession(
trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
)
r = await session.request(
method="POST",
url=request_url,
data=payload,
headers=headers,
cookies=cookies,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
)
# === 13. 处理响应 ===
# Check if response is SSE
if "text/event-stream" in r.headers.get("Content-Type", ""):
# 流式响应:直接转发 SSE 流
streaming = True
return StreamingResponse(
r.content,
status_code=r.status,
headers=dict(r.headers),
background=BackgroundTask(
cleanup_response, response=r, session=session
),
)
else:
# 非流式响应:解析 JSON
try:
response = await r.json()
except Exception as e:
log.error(e)
response = await r.text() # 如果 JSON 解析失败,返回纯文本
# 处理错误响应
if r.status >= 400:
if isinstance(response, (dict, list)):
return JSONResponse(status_code=r.status, content=response)
else:
return PlainTextResponse(status_code=r.status, content=response)
return response # 成功响应
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=r.status if r else 500,
detail="CyberLover: Server Connection Error",
)
finally:
# === 14. 清理资源 ===
# 非流式响应需要手动关闭连接(流式响应在 BackgroundTask 中处理)
if not streaming:
await cleanup_response(r, session)
async def embeddings(request: Request, form_data: dict, user):
"""
Calls the embeddings endpoint for OpenAI-compatible providers.
Args:
request (Request): The FastAPI request context.
form_data (dict): OpenAI-compatible embeddings payload.
user (UserModel): The authenticated user.
Returns:
dict: OpenAI-compatible embeddings response.
"""
idx = 0
# Prepare payload/body
body = json.dumps(form_data)
# Find correct backend url/key based on model
await get_all_models(request, user=user)
model_id = form_data.get("model")
models = request.app.state.OPENAI_MODELS
if model_id in models:
idx = models[model_id]["urlIdx"]
url = request.app.state.config.OPENAI_API_BASE_URLS[idx]
key = request.app.state.config.OPENAI_API_KEYS[idx]
api_config = request.app.state.config.OPENAI_API_CONFIGS.get(
str(idx),
request.app.state.config.OPENAI_API_CONFIGS.get(url, {}), # Legacy support
)
r = None
session = None
streaming = False
headers, cookies = await get_headers_and_cookies(
request, url, key, api_config, user=user
)
try:
session = aiohttp.ClientSession(trust_env=True)
r = await session.request(
method="POST",
url=f"{url}/embeddings",
data=body,
headers=headers,
cookies=cookies,
)
if "text/event-stream" in r.headers.get("Content-Type", ""):
streaming = True
return StreamingResponse(
r.content,
status_code=r.status,
headers=dict(r.headers),
background=BackgroundTask(
cleanup_response, response=r, session=session
),
)
else:
try:
response_data = await r.json()
except Exception:
response_data = await r.text()
if r.status >= 400:
if isinstance(response_data, (dict, list)):
return JSONResponse(status_code=r.status, content=response_data)
else:
return PlainTextResponse(
status_code=r.status, content=response_data
)
return response_data
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=r.status if r else 500,
detail="CyberLover: Server Connection Error",
)
finally:
if not streaming:
await cleanup_response(r, session)
@router.api_route("/{path:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def proxy(path: str, request: Request, user=Depends(get_verified_user)):
"""
Deprecated: proxy all requests to OpenAI API
"""
body = await request.body()
idx = 0
url = request.app.state.config.OPENAI_API_BASE_URLS[idx]
key = request.app.state.config.OPENAI_API_KEYS[idx]
api_config = request.app.state.config.OPENAI_API_CONFIGS.get(
str(idx),
request.app.state.config.OPENAI_API_CONFIGS.get(
request.app.state.config.OPENAI_API_BASE_URLS[idx], {}
), # Legacy support
)
r = None
session = None
streaming = False
try:
headers, cookies = await get_headers_and_cookies(
request, url, key, api_config, user=user
)
if api_config.get("azure", False):
api_version = api_config.get("api_version", "2023-03-15-preview")
# Only set api-key header if not using Azure Entra ID authentication
auth_type = api_config.get("auth_type", "bearer")
if auth_type not in ("azure_ad", "microsoft_entra_id"):
headers["api-key"] = key
headers["api-version"] = api_version
payload = json.loads(body)
url, payload = convert_to_azure_payload(url, payload, api_version)
body = json.dumps(payload).encode()
request_url = f"{url}/{path}?api-version={api_version}"
else:
request_url = f"{url}/{path}"
session = aiohttp.ClientSession(trust_env=True)
r = await session.request(
method=request.method,
url=request_url,
data=body,
headers=headers,
cookies=cookies,
ssl=AIOHTTP_CLIENT_SESSION_SSL,
)
# Check if response is SSE
if "text/event-stream" in r.headers.get("Content-Type", ""):
streaming = True
return StreamingResponse(
r.content,
status_code=r.status,
headers=dict(r.headers),
background=BackgroundTask(
cleanup_response, response=r, session=session
),
)
else:
try:
response_data = await r.json()
except Exception:
response_data = await r.text()
if r.status >= 400:
if isinstance(response_data, (dict, list)):
return JSONResponse(status_code=r.status, content=response_data)
else:
return PlainTextResponse(
status_code=r.status, content=response_data
)
return response_data
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=r.status if r else 500,
detail="CyberLover: Server Connection Error",
)
finally:
if not streaming:
await cleanup_response(r, session)