mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-12-12 02:45:18 +00:00
Merge pull request #1954 from abhinav-1305/add-custom-inference
feat: Add support for Bedrock custom inference profiles via model_id
This commit is contained in:
commit
a23b527101
4 changed files with 28 additions and 0 deletions
|
|
@ -250,6 +250,26 @@ model="bedrock/us.meta.llama4-scout-17b-instruct-v1:0"
|
||||||
fallback_models=["bedrock/us.meta.llama4-maverick-17b-instruct-v1:0"]
|
fallback_models=["bedrock/us.meta.llama4-maverick-17b-instruct-v1:0"]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### Custom Inference Profiles
|
||||||
|
|
||||||
|
To use a custom inference profile with Amazon Bedrock (for cost allocation tags and other configuration settings), add the `model_id` parameter to your configuration:
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[config] # in configuration.toml
|
||||||
|
model="bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"
|
||||||
|
fallback_models=["bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"]
|
||||||
|
|
||||||
|
[aws]
|
||||||
|
AWS_ACCESS_KEY_ID="..."
|
||||||
|
AWS_SECRET_ACCESS_KEY="..."
|
||||||
|
AWS_REGION_NAME="..."
|
||||||
|
|
||||||
|
[litellm]
|
||||||
|
model_id = "your-custom-inference-profile-id"
|
||||||
|
```
|
||||||
|
|
||||||
|
The `model_id` parameter will be passed to all Bedrock completion calls, allowing you to use custom inference profiles for better cost allocation and reporting.
|
||||||
|
|
||||||
See [litellm](https://docs.litellm.ai/docs/providers/bedrock#usage) documentation for more information about the environment variables required for Amazon Bedrock.
|
See [litellm](https://docs.litellm.ai/docs/providers/bedrock#usage) documentation for more information about the environment variables required for Amazon Bedrock.
|
||||||
|
|
||||||
### DeepSeek
|
### DeepSeek
|
||||||
|
|
|
||||||
|
|
@ -352,6 +352,12 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||||
# Support for custom OpenAI body fields (e.g., Flex Processing)
|
# Support for custom OpenAI body fields (e.g., Flex Processing)
|
||||||
kwargs = _process_litellm_extra_body(kwargs)
|
kwargs = _process_litellm_extra_body(kwargs)
|
||||||
|
|
||||||
|
# Support for Bedrock custom inference profile via model_id
|
||||||
|
model_id = get_settings().get("litellm.model_id")
|
||||||
|
if model_id and 'bedrock/' in model:
|
||||||
|
kwargs["model_id"] = model_id
|
||||||
|
get_logger().info(f"Using Bedrock custom inference profile: {model_id}")
|
||||||
|
|
||||||
get_logger().debug("Prompts", artifact={"system": system, "user": user})
|
get_logger().debug("Prompts", artifact={"system": system, "user": user})
|
||||||
|
|
||||||
if get_settings().config.verbosity_level >= 2:
|
if get_settings().config.verbosity_level >= 2:
|
||||||
|
|
|
||||||
|
|
@ -19,6 +19,7 @@ key = "" # Acquire through https://platform.openai.com
|
||||||
# OpenAI Flex Processing (optional, for cost savings)
|
# OpenAI Flex Processing (optional, for cost savings)
|
||||||
# [litellm]
|
# [litellm]
|
||||||
# extra_body='{"processing_mode": "flex"}'
|
# extra_body='{"processing_mode": "flex"}'
|
||||||
|
# model_id = "" # Optional: Custom inference profile ID for Amazon Bedrock
|
||||||
|
|
||||||
[pinecone]
|
[pinecone]
|
||||||
api_key = "..."
|
api_key = "..."
|
||||||
|
|
|
||||||
|
|
@ -334,6 +334,7 @@ enable_callbacks = false
|
||||||
success_callback = []
|
success_callback = []
|
||||||
failure_callback = []
|
failure_callback = []
|
||||||
service_callback = []
|
service_callback = []
|
||||||
|
# model_id = "" # Optional: Custom inference profile ID for Amazon Bedrock
|
||||||
|
|
||||||
[pr_similar_issue]
|
[pr_similar_issue]
|
||||||
skip_comments = false
|
skip_comments = false
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue