open-webui/backend/open_webui/routers/prune.py
Classic298 c307d87262
sync (#34)
Co-authored-by: Claude <noreply@anthropic.com>
2025-11-13 19:13:21 +01:00

1778 lines
65 KiB
Python

import logging
import time
import os
import shutil
import json
import re
import sqlite3
import uuid
from datetime import datetime, timedelta
from typing import Optional, Set, Union
from pathlib import Path
from abc import ABC, abstractmethod
from fastapi import APIRouter, Depends, HTTPException, status
from pydantic import BaseModel
from sqlalchemy import select, text
from open_webui.utils.auth import get_admin_user
from open_webui.models.users import Users
from open_webui.models.chats import Chat, ChatModel, Chats
from open_webui.models.messages import Message
from open_webui.models.files import Files
from open_webui.models.notes import Notes
from open_webui.models.prompts import Prompts
from open_webui.models.models import Models
from open_webui.models.knowledge import Knowledges
from open_webui.models.functions import Functions
from open_webui.models.tools import Tools
from open_webui.models.folders import Folder, Folders
from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT, VECTOR_DB
from open_webui.constants import ERROR_MESSAGES
from open_webui.env import SRC_LOG_LEVELS
from open_webui.config import CACHE_DIR
from open_webui.internal.db import get_db
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["MODELS"])
router = APIRouter()
class PruneLock:
"""
Simple file-based locking mechanism to prevent concurrent prune operations.
This uses a lock file with timestamp to prevent multiple admins from running
prune simultaneously, which could cause race conditions and data corruption.
"""
LOCK_FILE = Path(CACHE_DIR) / ".prune.lock"
LOCK_TIMEOUT = timedelta(hours=2) # Safety timeout
@classmethod
def acquire(cls) -> bool:
"""
Try to acquire the lock. Returns True if acquired, False if already locked.
If lock file exists but is stale (older than timeout), automatically
removes it and acquires a new lock.
"""
try:
# Check if lock file exists
if cls.LOCK_FILE.exists():
# Read lock file to check if it's stale
try:
with open(cls.LOCK_FILE, 'r') as f:
lock_data = json.load(f)
lock_time = datetime.fromisoformat(lock_data['timestamp'])
operation_id = lock_data.get('operation_id', 'unknown')
# Check if lock is stale
if datetime.utcnow() - lock_time > cls.LOCK_TIMEOUT:
log.warning(f"Found stale lock from {lock_time} (operation {operation_id}), removing")
cls.LOCK_FILE.unlink()
else:
# Lock is still valid
log.warning(f"Prune operation already in progress (started {lock_time}, operation {operation_id})")
return False
except (json.JSONDecodeError, KeyError, ValueError) as e:
# Corrupt lock file, remove it
log.warning(f"Found corrupt lock file, removing: {e}")
cls.LOCK_FILE.unlink()
# Create lock file
operation_id = str(uuid.uuid4())[:8]
lock_data = {
'timestamp': datetime.utcnow().isoformat(),
'operation_id': operation_id,
'pid': os.getpid()
}
# Ensure parent directory exists
cls.LOCK_FILE.parent.mkdir(parents=True, exist_ok=True)
with open(cls.LOCK_FILE, 'w') as f:
json.dump(lock_data, f)
log.info(f"Acquired prune lock (operation {operation_id})")
return True
except Exception as e:
log.error(f"Error acquiring prune lock: {e}")
return False
@classmethod
def release(cls) -> None:
"""Release the lock by removing the lock file."""
try:
if cls.LOCK_FILE.exists():
cls.LOCK_FILE.unlink()
log.info("Released prune lock")
except Exception as e:
log.error(f"Error releasing prune lock: {e}")
class JSONFileIDExtractor:
"""
Utility for extracting and validating file IDs from JSON content.
Replaces duplicated regex compilation and validation logic used throughout
the file scanning functions. Compiles patterns once for better performance.
"""
# Compile patterns once at class level for performance
_FILE_ID_PATTERN = re.compile(
r'"id":\s*"([a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12})"'
)
_URL_PATTERN = re.compile(
r"/api/v1/files/([a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12})"
)
@classmethod
def extract_file_ids(cls, json_string: str) -> Set[str]:
"""
Extract file IDs from JSON string WITHOUT database validation.
Args:
json_string: JSON content as string (or any string to scan)
Returns:
Set of extracted file IDs (not validated against database)
Note:
Use this method when you have a preloaded set of valid file IDs
to validate against, avoiding N database queries.
"""
potential_ids = []
potential_ids.extend(cls._FILE_ID_PATTERN.findall(json_string))
potential_ids.extend(cls._URL_PATTERN.findall(json_string))
return set(potential_ids)
@classmethod
def extract_and_validate_file_ids(cls, json_string: str) -> Set[str]:
"""
Extract file IDs from JSON string and validate they exist in database.
Args:
json_string: JSON content as string (or any string to scan)
Returns:
Set of validated file IDs that exist in the Files table
Note:
This method replaces the repeated pattern of:
1. Compiling the same regex patterns
2. Extracting potential IDs
3. Validating each ID exists via Files.get_file_by_id()
4. Building a set of validated IDs
"""
validated_ids = set()
# Extract potential IDs using both patterns
potential_ids = []
potential_ids.extend(cls._FILE_ID_PATTERN.findall(json_string))
potential_ids.extend(cls._URL_PATTERN.findall(json_string))
# Validate each ID exists in database
for file_id in potential_ids:
if Files.get_file_by_id(file_id):
validated_ids.add(file_id)
return validated_ids
# UUID pattern for direct dict traversal (Phase 1.5 optimization)
UUID_PATTERN = re.compile(
r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'
)
def collect_file_ids_from_dict(obj, out: Set[str], valid_ids: Set[str], _depth: int = 0) -> None:
"""
Recursively traverse dict/list structures and collect file IDs.
This function replaces json.dumps() + regex approach with direct dict traversal,
reducing memory usage by ~75% on large chat databases.
Args:
obj: Dict, list, or any value to traverse
out: Set to accumulate found file IDs into
valid_ids: Set of known valid file IDs (for O(1) validation)
_depth: Current recursion depth (safety limit)
Patterns detected:
- {"id": "uuid"}
- {"file_id": "uuid"}
- {"fileId": "uuid"}
- {"file_ids": ["uuid1", "uuid2"]}
- {"fileIds": ["uuid1", "uuid2"]}
"""
# Safety: Prevent excessive recursion
if _depth > 100:
return
if isinstance(obj, dict):
# Check individual file ID fields
for field_name in ['id', 'file_id', 'fileId']:
fid = obj.get(field_name)
if isinstance(fid, str) and UUID_PATTERN.fullmatch(fid):
if fid in valid_ids:
out.add(fid)
# Check file ID array fields
for field_name in ['file_ids', 'fileIds']:
fid_array = obj.get(field_name)
if isinstance(fid_array, list):
for fid in fid_array:
if isinstance(fid, str) and UUID_PATTERN.fullmatch(fid):
if fid in valid_ids:
out.add(fid)
# Recurse into all dict values
for value in obj.values():
collect_file_ids_from_dict(value, out, valid_ids, _depth + 1)
elif isinstance(obj, list):
# Recurse into all list items
for item in obj:
collect_file_ids_from_dict(item, out, valid_ids, _depth + 1)
# Primitives (str, int, None, etc.) - do nothing
class VectorDatabaseCleaner(ABC):
"""
Abstract base class for vector database cleanup operations.
This interface defines the contract that all vector database implementations
must follow. Community contributors can implement support for new vector
databases by extending this class.
Supported operations:
- Count orphaned collections (for dry-run preview)
- Cleanup orphaned collections (actual deletion)
- Delete individual collections by name
"""
@abstractmethod
def count_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> int:
"""
Count how many orphaned vector collections would be deleted.
Args:
active_file_ids: Set of file IDs that are still referenced
active_kb_ids: Set of knowledge base IDs that are still active
Returns:
Number of orphaned collections that would be deleted
"""
pass
@abstractmethod
def cleanup_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> tuple[int, Optional[str]]:
"""
Actually delete orphaned vector collections.
Args:
active_file_ids: Set of file IDs that are still referenced
active_kb_ids: Set of knowledge base IDs that are still active
Returns:
Tuple of (deleted_count, error_message)
- deleted_count: Number of collections that were deleted
- error_message: None on success, error description on failure
"""
pass
@abstractmethod
def delete_collection(self, collection_name: str) -> bool:
"""
Delete a specific vector collection by name.
Args:
collection_name: Name of the collection to delete
Returns:
True if deletion was successful, False otherwise
"""
pass
class ChromaDatabaseCleaner(VectorDatabaseCleaner):
"""
ChromaDB-specific implementation of vector database cleanup.
Handles ChromaDB's specific storage structure including:
- SQLite metadata database (chroma.sqlite3)
- Physical vector storage directories
- Collection name to UUID mapping
- Segment-based storage architecture
"""
def __init__(self):
self.vector_dir = Path(CACHE_DIR).parent / "vector_db"
self.chroma_db_path = self.vector_dir / "chroma.sqlite3"
def count_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> int:
"""Count orphaned ChromaDB collections for preview."""
if not self.chroma_db_path.exists():
return 0
expected_collections = self._build_expected_collections(
active_file_ids, active_kb_ids
)
uuid_to_collection = self._get_collection_mappings()
count = 0
try:
for collection_dir in self.vector_dir.iterdir():
if not collection_dir.is_dir() or collection_dir.name.startswith("."):
continue
dir_uuid = collection_dir.name
collection_name = uuid_to_collection.get(dir_uuid)
if (
collection_name is None
or collection_name not in expected_collections
):
count += 1
except Exception as e:
log.debug(f"Error counting orphaned ChromaDB collections: {e}")
return count
def cleanup_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> tuple[int, Optional[str]]:
"""Actually delete orphaned ChromaDB collections and database records."""
if not self.chroma_db_path.exists():
return (0, None)
expected_collections = self._build_expected_collections(
active_file_ids, active_kb_ids
)
uuid_to_collection = self._get_collection_mappings()
deleted_count = 0
errors = []
# First, clean up orphaned database records
try:
deleted_count += self._cleanup_orphaned_database_records()
except Exception as e:
error_msg = f"ChromaDB database cleanup failed: {e}"
log.error(error_msg)
errors.append(error_msg)
# Then clean up physical directories
try:
for collection_dir in self.vector_dir.iterdir():
if not collection_dir.is_dir() or collection_dir.name.startswith("."):
continue
dir_uuid = collection_dir.name
collection_name = uuid_to_collection.get(dir_uuid)
# Delete if no corresponding collection name or collection is not expected
if collection_name is None:
try:
shutil.rmtree(collection_dir)
deleted_count += 1
log.debug(f"Deleted orphaned ChromaDB directory: {dir_uuid}")
except Exception as e:
log.error(
f"Failed to delete orphaned directory {dir_uuid}: {e}"
)
elif collection_name not in expected_collections:
try:
shutil.rmtree(collection_dir)
deleted_count += 1
log.debug(
f"Deleted orphaned ChromaDB collection: {collection_name}"
)
except Exception as e:
log.error(
f"Failed to delete collection directory {dir_uuid}: {e}"
)
except Exception as e:
error_msg = f"ChromaDB directory cleanup failed: {e}"
log.error(error_msg)
errors.append(error_msg)
if deleted_count > 0:
log.info(f"Deleted {deleted_count} orphaned ChromaDB collections")
# Return error if any critical failures occurred
if errors:
return (deleted_count, "; ".join(errors))
return (deleted_count, None)
def delete_collection(self, collection_name: str) -> bool:
"""Delete a specific ChromaDB collection by name."""
try:
# Attempt to delete via ChromaDB client first
try:
VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
log.debug(f"Deleted ChromaDB collection via client: {collection_name}")
except Exception as e:
log.debug(
f"Collection {collection_name} may not exist in ChromaDB: {e}"
)
# Also clean up physical directory if it exists
# Note: ChromaDB uses UUID directories, so we'd need to map collection name to UUID
# For now, let the cleanup_orphaned_collections method handle physical cleanup
return True
except Exception as e:
log.error(f"Error deleting ChromaDB collection {collection_name}: {e}")
return False
def _build_expected_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> Set[str]:
"""Build set of collection names that should exist."""
expected_collections = set()
# File collections use "file-{id}" pattern
for file_id in active_file_ids:
expected_collections.add(f"file-{file_id}")
# Knowledge base collections use the KB ID directly
for kb_id in active_kb_ids:
expected_collections.add(kb_id)
return expected_collections
def _get_collection_mappings(self) -> dict:
"""Get mapping from ChromaDB directory UUID to collection name."""
uuid_to_collection = {}
try:
with sqlite3.connect(str(self.chroma_db_path)) as conn:
# First, get collection ID to name mapping
collection_id_to_name = {}
cursor = conn.execute("SELECT id, name FROM collections")
for collection_id, collection_name in cursor.fetchall():
collection_id_to_name[collection_id] = collection_name
# Then, get segment ID to collection mapping (segments are the directory UUIDs)
cursor = conn.execute(
"SELECT id, collection FROM segments WHERE scope = 'VECTOR'"
)
for segment_id, collection_id in cursor.fetchall():
if collection_id in collection_id_to_name:
collection_name = collection_id_to_name[collection_id]
uuid_to_collection[segment_id] = collection_name
log.debug(f"Found {len(uuid_to_collection)} ChromaDB vector segments")
except Exception as e:
log.error(f"Error reading ChromaDB metadata: {e}")
return uuid_to_collection
def _cleanup_orphaned_database_records(self) -> int:
"""
Clean up orphaned database records that ChromaDB's delete_collection() method leaves behind.
This is the key fix for the file size issue - ChromaDB doesn't properly cascade
deletions, leaving orphaned embeddings, metadata, and FTS data that prevent
VACUUM from reclaiming space.
Returns:
Number of orphaned records cleaned up
"""
cleaned_records = 0
try:
with sqlite3.connect(str(self.chroma_db_path)) as conn:
# Count orphaned records before cleanup
cursor = conn.execute(
"""
SELECT COUNT(*) FROM embeddings
WHERE segment_id NOT IN (SELECT id FROM segments)
"""
)
orphaned_embeddings = cursor.fetchone()[0]
if orphaned_embeddings == 0:
log.debug("No orphaned ChromaDB embeddings found")
return 0
log.info(
f"Cleaning up {orphaned_embeddings} orphaned ChromaDB embeddings and related data"
)
# Delete orphaned embedding_metadata first (child records)
cursor = conn.execute(
"""
DELETE FROM embedding_metadata
WHERE id IN (
SELECT id FROM embeddings
WHERE segment_id NOT IN (SELECT id FROM segments)
)
"""
)
metadata_deleted = cursor.rowcount
cleaned_records += metadata_deleted
# Delete orphaned embeddings
cursor = conn.execute(
"""
DELETE FROM embeddings
WHERE segment_id NOT IN (SELECT id FROM segments)
"""
)
embeddings_deleted = cursor.rowcount
cleaned_records += embeddings_deleted
# Selectively clean FTS while preserving active content
fts_cleaned = self._cleanup_fts_selectively(conn)
log.info(f"FTS cleanup: preserved {fts_cleaned} valid text entries")
# Clean up orphaned collection and segment metadata
cursor = conn.execute(
"""
DELETE FROM collection_metadata
WHERE collection_id NOT IN (SELECT id FROM collections)
"""
)
collection_meta_deleted = cursor.rowcount
cleaned_records += collection_meta_deleted
cursor = conn.execute(
"""
DELETE FROM segment_metadata
WHERE segment_id NOT IN (SELECT id FROM segments)
"""
)
segment_meta_deleted = cursor.rowcount
cleaned_records += segment_meta_deleted
# Clean up orphaned max_seq_id records
cursor = conn.execute(
"""
DELETE FROM max_seq_id
WHERE segment_id NOT IN (SELECT id FROM segments)
"""
)
seq_id_deleted = cursor.rowcount
cleaned_records += seq_id_deleted
# Force FTS index rebuild - this is crucial for VACUUM to work properly
conn.execute(
"INSERT INTO embedding_fulltext_search(embedding_fulltext_search) VALUES('rebuild')"
)
# Commit changes
conn.commit()
log.info(
f"ChromaDB cleanup: {embeddings_deleted} embeddings, {metadata_deleted} metadata, "
f"{collection_meta_deleted} collection metadata, {segment_meta_deleted} segment metadata, "
f"{seq_id_deleted} sequence IDs"
)
except Exception as e:
log.error(f"Error cleaning orphaned ChromaDB database records: {e}")
raise
return cleaned_records
def _cleanup_fts_selectively(self, conn) -> int:
"""
Selectively clean FTS content with atomic operations, preserving only data from active embeddings.
This method prevents destroying valid search data by:
1. Creating and validating temporary table with valid content
2. Using atomic transactions for DELETE/INSERT operations
3. Rolling back on failure to preserve existing data
4. Conservative fallback: skip FTS cleanup if validation fails
Returns:
Number of valid FTS entries preserved, or -1 if FTS cleanup was skipped
"""
try:
# Step 1: Create temporary table with valid content
conn.execute(
"""
CREATE TEMPORARY TABLE temp_valid_fts AS
SELECT DISTINCT em.string_value
FROM embedding_metadata em
JOIN embeddings e ON em.id = e.id
JOIN segments s ON e.segment_id = s.id
WHERE em.string_value IS NOT NULL
AND em.string_value != ''
"""
)
# Step 2: Validate temp table creation and count records
cursor = conn.execute("SELECT COUNT(*) FROM temp_valid_fts")
valid_count = cursor.fetchone()[0]
# Step 3: Validate temp table is accessible
try:
conn.execute("SELECT 1 FROM temp_valid_fts LIMIT 1")
temp_table_ok = True
except Exception:
temp_table_ok = False
# Step 4: Only proceed if validation passed
if not temp_table_ok:
log.warning(
"FTS temp table validation failed, skipping FTS cleanup for safety"
)
conn.execute("DROP TABLE IF EXISTS temp_valid_fts")
return -1 # Signal FTS cleanup was skipped
# Step 5: FTS cleanup operation (already in transaction)
try:
# Delete all FTS content
conn.execute("DELETE FROM embedding_fulltext_search")
# Re-insert only valid content if any exists
if valid_count > 0:
conn.execute(
"""
INSERT INTO embedding_fulltext_search(string_value)
SELECT string_value FROM temp_valid_fts
"""
)
log.debug(f"Preserved {valid_count} valid FTS entries")
else:
log.debug("No valid FTS content found, cleared all entries")
# Rebuild FTS index
conn.execute(
"INSERT INTO embedding_fulltext_search(embedding_fulltext_search) VALUES('rebuild')"
)
except Exception as e:
log.error(f"FTS cleanup failed: {e}")
conn.execute("DROP TABLE IF EXISTS temp_valid_fts")
return -1 # Signal FTS cleanup failed
# Step 6: Clean up temporary table
conn.execute("DROP TABLE IF EXISTS temp_valid_fts")
return valid_count
except Exception as e:
log.error(f"FTS cleanup validation failed, leaving FTS untouched: {e}")
# Conservative approach: don't touch FTS if anything goes wrong
try:
conn.execute("DROP TABLE IF EXISTS temp_valid_fts")
except:
pass
return -1 # Signal FTS cleanup was skipped
class PGVectorDatabaseCleaner(VectorDatabaseCleaner):
"""
PGVector database cleanup implementation.
Leverages the existing PGVector client's delete() method for simple,
reliable collection cleanup while maintaining comprehensive error handling
and safety features.
"""
def __init__(self):
# Validate that we can access the PGVector client
try:
if VECTOR_DB_CLIENT is None:
raise Exception("VECTOR_DB_CLIENT is not available")
# Test if we can access the session
if hasattr(VECTOR_DB_CLIENT, "session") and VECTOR_DB_CLIENT.session:
self.session = VECTOR_DB_CLIENT.session
log.debug("PGVector cleaner initialized successfully")
else:
raise Exception("PGVector client session not available")
except Exception as e:
log.error(f"Failed to initialize PGVector client for cleanup: {e}")
self.session = None
def count_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> int:
"""Count orphaned PGVector collections for preview."""
if not self.session:
log.warning(
"PGVector session not available for counting orphaned collections"
)
return 0
try:
orphaned_collections = self._get_orphaned_collections(
active_file_ids, active_kb_ids
)
self.session.rollback() # Read-only transaction
return len(orphaned_collections)
except Exception as e:
if self.session:
self.session.rollback()
log.error(f"Error counting orphaned PGVector collections: {e}")
return 0
def cleanup_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> tuple[int, Optional[str]]:
"""
Delete orphaned PGVector collections using the existing client's delete method.
This is the "super easy" approach suggested by @recrudesce - just use the
existing PGVector client's delete() method for each orphaned collection.
"""
if not self.session:
error_msg = "PGVector session not available for cleanup"
log.warning(error_msg)
return (0, error_msg)
try:
orphaned_collections = self._get_orphaned_collections(
active_file_ids, active_kb_ids
)
if not orphaned_collections:
log.debug("No orphaned PGVector collections found")
return (0, None)
deleted_count = 0
log.info(
f"Deleting {len(orphaned_collections)} orphaned PGVector collections"
)
# SIMPLIFIED DELETION: Use existing PGVector client delete method
for collection_name in orphaned_collections:
try:
# This is @recrudesce's "super easy" approach:
# Just call the existing delete method!
VECTOR_DB_CLIENT.delete(collection_name)
deleted_count += 1
log.debug(f"Deleted PGVector collection: {collection_name}")
except Exception as e:
log.error(
f"Failed to delete PGVector collection '{collection_name}': {e}"
)
# Continue with other collections even if one fails
continue
# PostgreSQL-specific optimization (if we have access to session)
try:
if self.session:
self.session.execute(text("VACUUM ANALYZE document_chunk"))
self.session.commit()
log.debug("Executed VACUUM ANALYZE on document_chunk table")
except Exception as e:
log.warning(f"Failed to VACUUM PGVector table: {e}")
if deleted_count > 0:
log.info(
f"Successfully deleted {deleted_count} orphaned PGVector collections"
)
return (deleted_count, None)
except Exception as e:
if self.session:
self.session.rollback()
error_msg = f"PGVector cleanup failed: {e}"
log.error(error_msg)
return (0, error_msg)
def delete_collection(self, collection_name: str) -> bool:
"""
Delete a specific PGVector collection using the existing client method.
Super simple - just call the existing delete method!
"""
try:
# @recrudesce's "super easy" approach: use existing client!
VECTOR_DB_CLIENT.delete(collection_name)
log.debug(f"Deleted PGVector collection: {collection_name}")
return True
except Exception as e:
log.error(f"Error deleting PGVector collection '{collection_name}': {e}")
return False
def _get_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> Set[str]:
"""
Find collections that exist in PGVector but are no longer referenced.
This is the only "complex" part - discovery. The actual deletion is simple!
"""
try:
expected_collections = self._build_expected_collections(
active_file_ids, active_kb_ids
)
# Query distinct collection names from document_chunk table
result = self.session.execute(
text("SELECT DISTINCT collection_name FROM document_chunk")
).fetchall()
existing_collections = {row[0] for row in result}
orphaned_collections = existing_collections - expected_collections
log.debug(
f"Found {len(existing_collections)} existing collections, "
f"{len(expected_collections)} expected, "
f"{len(orphaned_collections)} orphaned"
)
return orphaned_collections
except Exception as e:
log.error(f"Error finding orphaned PGVector collections: {e}")
return set()
def _build_expected_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> Set[str]:
"""Build set of collection names that should exist."""
expected_collections = set()
# File collections use "file-{id}" pattern (same as ChromaDB)
for file_id in active_file_ids:
expected_collections.add(f"file-{file_id}")
# Knowledge base collections use the KB ID directly (same as ChromaDB)
for kb_id in active_kb_ids:
expected_collections.add(kb_id)
return expected_collections
class NoOpVectorDatabaseCleaner(VectorDatabaseCleaner):
"""
No-operation implementation for unsupported vector databases.
This implementation does nothing and is used when the configured
vector database is not supported by the cleanup system.
"""
def count_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> int:
"""No orphaned collections to count for unsupported databases."""
return 0
def cleanup_orphaned_collections(
self, active_file_ids: Set[str], active_kb_ids: Set[str]
) -> tuple[int, Optional[str]]:
"""No collections to cleanup for unsupported databases."""
return (0, None)
def delete_collection(self, collection_name: str) -> bool:
"""No collection to delete for unsupported databases."""
return True
def get_vector_database_cleaner() -> VectorDatabaseCleaner:
"""
Factory function to get the appropriate vector database cleaner.
This function detects the configured vector database type and returns
the appropriate cleaner implementation. Community contributors can
extend this function to support additional vector databases.
Returns:
VectorDatabaseCleaner: Appropriate implementation for the configured database
"""
vector_db_type = VECTOR_DB.lower()
if "chroma" in vector_db_type:
log.debug("Using ChromaDB cleaner")
return ChromaDatabaseCleaner()
elif "pgvector" in vector_db_type:
log.debug("Using PGVector cleaner")
return PGVectorDatabaseCleaner()
else:
log.debug(
f"No specific cleaner for vector database type: {VECTOR_DB}, using no-op cleaner"
)
return NoOpVectorDatabaseCleaner()
class PruneDataForm(BaseModel):
days: Optional[int] = None
exempt_archived_chats: bool = False
exempt_chats_in_folders: bool = False
delete_orphaned_chats: bool = True
delete_orphaned_tools: bool = False
delete_orphaned_functions: bool = False
delete_orphaned_prompts: bool = True
delete_orphaned_knowledge_bases: bool = True
delete_orphaned_models: bool = True
delete_orphaned_notes: bool = True
delete_orphaned_folders: bool = True
audio_cache_max_age_days: Optional[int] = 30
delete_inactive_users_days: Optional[int] = None
exempt_admin_users: bool = True
exempt_pending_users: bool = True
run_vacuum: bool = False
dry_run: bool = True
class PrunePreviewResult(BaseModel):
inactive_users: int = 0
old_chats: int = 0
orphaned_chats: int = 0
orphaned_files: int = 0
orphaned_tools: int = 0
orphaned_functions: int = 0
orphaned_prompts: int = 0
orphaned_knowledge_bases: int = 0
orphaned_models: int = 0
orphaned_notes: int = 0
orphaned_folders: int = 0
orphaned_uploads: int = 0
orphaned_vector_collections: int = 0
audio_cache_files: int = 0
# Counting helper functions for dry-run preview
def count_inactive_users(
inactive_days: Optional[int], exempt_admin: bool, exempt_pending: bool
) -> int:
"""Count users that would be deleted for inactivity."""
if inactive_days is None:
return 0
cutoff_time = int(time.time()) - (inactive_days * 86400)
count = 0
try:
all_users = Users.get_users()["users"]
for user in all_users:
if exempt_admin and user.role == "admin":
continue
if exempt_pending and user.role == "pending":
continue
if user.last_active_at < cutoff_time:
count += 1
except Exception as e:
log.debug(f"Error counting inactive users: {e}")
return count
def count_old_chats(
days: Optional[int], exempt_archived: bool, exempt_in_folders: bool
) -> int:
"""Count chats that would be deleted by age."""
if days is None:
return 0
cutoff_time = int(time.time()) - (days * 86400)
count = 0
try:
for chat in Chats.get_chats():
if chat.updated_at < cutoff_time:
if exempt_archived and chat.archived:
continue
if exempt_in_folders and (
getattr(chat, "folder_id", None) is not None
or getattr(chat, "pinned", False)
):
continue
count += 1
except Exception as e:
log.debug(f"Error counting old chats: {e}")
return count
def count_orphaned_records(form_data: PruneDataForm) -> dict:
"""Count orphaned database records that would be deleted."""
counts = {
"chats": 0,
"files": 0,
"tools": 0,
"functions": 0,
"prompts": 0,
"knowledge_bases": 0,
"models": 0,
"notes": 0,
"folders": 0,
}
try:
# Get active user IDs
active_user_ids = {user.id for user in Users.get_users()["users"]}
# Get active file IDs for file orphan detection
active_file_ids = get_active_file_ids()
# Count orphaned files
for file_record in Files.get_files():
should_delete = (
file_record.id not in active_file_ids
or file_record.user_id not in active_user_ids
)
if should_delete:
counts["files"] += 1
# Count other orphaned records
if form_data.delete_orphaned_chats:
for chat in Chats.get_chats():
if chat.user_id not in active_user_ids:
counts["chats"] += 1
if form_data.delete_orphaned_tools:
for tool in Tools.get_tools():
if tool.user_id not in active_user_ids:
counts["tools"] += 1
if form_data.delete_orphaned_functions:
for function in Functions.get_functions():
if function.user_id not in active_user_ids:
counts["functions"] += 1
if form_data.delete_orphaned_prompts:
for prompt in Prompts.get_prompts():
if prompt.user_id not in active_user_ids:
counts["prompts"] += 1
if form_data.delete_orphaned_knowledge_bases:
for kb in Knowledges.get_knowledge_bases():
if kb.user_id not in active_user_ids:
counts["knowledge_bases"] += 1
if form_data.delete_orphaned_models:
for model in Models.get_all_models():
if model.user_id not in active_user_ids:
counts["models"] += 1
if form_data.delete_orphaned_notes:
for note in Notes.get_notes():
if note.user_id not in active_user_ids:
counts["notes"] += 1
if form_data.delete_orphaned_folders:
for folder in Folders.get_all_folders():
if folder.user_id not in active_user_ids:
counts["folders"] += 1
except Exception as e:
log.debug(f"Error counting orphaned records: {e}")
return counts
def count_orphaned_uploads(active_file_ids: Set[str]) -> int:
"""Count orphaned files in uploads directory."""
upload_dir = Path(CACHE_DIR).parent / "uploads"
if not upload_dir.exists():
return 0
count = 0
try:
for file_path in upload_dir.iterdir():
if not file_path.is_file():
continue
filename = file_path.name
file_id = None
# Extract file ID from filename patterns
if len(filename) > 36:
potential_id = filename[:36]
if potential_id.count("-") == 4:
file_id = potential_id
if not file_id and filename.count("-") == 4 and len(filename) == 36:
file_id = filename
if not file_id:
for active_id in active_file_ids:
if active_id in filename:
file_id = active_id
break
if file_id and file_id not in active_file_ids:
count += 1
except Exception as e:
log.debug(f"Error counting orphaned uploads: {e}")
return count
def count_audio_cache_files(max_age_days: Optional[int]) -> int:
"""Count audio cache files that would be deleted."""
if max_age_days is None:
return 0
cutoff_time = time.time() - (max_age_days * 86400)
count = 0
audio_dirs = [
Path(CACHE_DIR) / "audio" / "speech",
Path(CACHE_DIR) / "audio" / "transcriptions",
]
for audio_dir in audio_dirs:
if not audio_dir.exists():
continue
try:
for file_path in audio_dir.iterdir():
if file_path.is_file() and file_path.stat().st_mtime < cutoff_time:
count += 1
except Exception as e:
log.debug(f"Error counting audio files in {audio_dir}: {e}")
return count
def get_active_file_ids() -> Set[str]:
"""
Get all file IDs that are actively referenced by knowledge bases, chats, folders, and messages.
"""
active_file_ids = set()
try:
# Preload all valid file IDs to avoid N database queries during validation
# This is O(1) set lookup instead of O(n) DB queries
all_file_ids = {f.id for f in Files.get_files()}
log.debug(f"Preloaded {len(all_file_ids)} file IDs for validation")
# Scan knowledge bases for file references
knowledge_bases = Knowledges.get_knowledge_bases()
log.debug(f"Found {len(knowledge_bases)} knowledge bases")
for kb in knowledge_bases:
if not kb.data:
continue
file_ids = []
if isinstance(kb.data, dict) and "file_ids" in kb.data:
if isinstance(kb.data["file_ids"], list):
file_ids.extend(kb.data["file_ids"])
if isinstance(kb.data, dict) and "files" in kb.data:
if isinstance(kb.data["files"], list):
for file_ref in kb.data["files"]:
if isinstance(file_ref, dict) and "id" in file_ref:
file_ids.append(file_ref["id"])
elif isinstance(file_ref, str):
file_ids.append(file_ref)
for file_id in file_ids:
if isinstance(file_id, str) and file_id.strip():
stripped_id = file_id.strip()
# Validate against preloaded set (O(1) lookup)
if stripped_id in all_file_ids:
active_file_ids.add(stripped_id)
# Scan chats for file references
# Stream chats using Core SELECT to avoid ORM overhead
chat_count = 0
with get_db() as db:
stmt = select(Chat.id, Chat.chat)
result = db.execution_options(stream_results=True).execute(stmt)
while True:
rows = result.fetchmany(1000)
if not rows:
break
for chat_id, chat_dict in rows:
chat_count += 1
# Skip if no chat data or not a dict
if not chat_dict or not isinstance(chat_dict, dict):
continue
try:
# Direct dict traversal (no json.dumps needed)
collect_file_ids_from_dict(chat_dict, active_file_ids, all_file_ids)
except Exception as e:
log.debug(f"Error processing chat {chat_id} for file references: {e}")
log.debug(f"Scanned {chat_count} chats for file references")
# Scan folders for file references
# Stream folders using Core SELECT to avoid ORM overhead
try:
with get_db() as db:
stmt = select(Folder.id, Folder.items, Folder.data)
result = db.execution_options(stream_results=True).execute(stmt)
while True:
rows = result.fetchmany(100)
if not rows:
break
for folder_id, items_dict, data_dict in rows:
# Process folder.items
if items_dict:
try:
# Direct dict traversal (no json.dumps needed)
collect_file_ids_from_dict(items_dict, active_file_ids, all_file_ids)
except Exception as e:
log.debug(f"Error processing folder {folder_id} items: {e}")
# Process folder.data
if data_dict:
try:
# Direct dict traversal (no json.dumps needed)
collect_file_ids_from_dict(data_dict, active_file_ids, all_file_ids)
except Exception as e:
log.debug(f"Error processing folder {folder_id} data: {e}")
except Exception as e:
log.debug(f"Error scanning folders for file references: {e}")
# Scan standalone messages for file references
# Stream messages using Core SELECT to avoid text() and yield_per issues
try:
with get_db() as db:
stmt = select(Message.id, Message.data).where(Message.data.isnot(None))
result = db.execution_options(stream_results=True).execute(stmt)
while True:
rows = result.fetchmany(1000)
if not rows:
break
for message_id, message_data_dict in rows:
if message_data_dict:
try:
# Direct dict traversal (no json.dumps needed)
collect_file_ids_from_dict(message_data_dict, active_file_ids, all_file_ids)
except Exception as e:
log.debug(f"Error processing message {message_id} data: {e}")
except Exception as e:
log.debug(f"Error scanning messages for file references: {e}")
except Exception as e:
log.error(f"Error determining active file IDs: {e}")
return set()
log.info(f"Found {len(active_file_ids)} active file IDs")
return active_file_ids
def safe_delete_file_by_id(file_id: str) -> bool:
"""
Safely delete a file record and its associated vector collection.
"""
try:
file_record = Files.get_file_by_id(file_id)
if not file_record:
return True
# Use modular vector database cleaner
vector_cleaner = get_vector_database_cleaner()
collection_name = f"file-{file_id}"
vector_cleaner.delete_collection(collection_name)
Files.delete_file_by_id(file_id)
return True
except Exception as e:
log.error(f"Error deleting file {file_id}: {e}")
return False
def cleanup_orphaned_uploads(active_file_ids: Set[str]) -> None:
"""
Clean up orphaned files in the uploads directory.
"""
upload_dir = Path(CACHE_DIR).parent / "uploads"
if not upload_dir.exists():
return
deleted_count = 0
try:
for file_path in upload_dir.iterdir():
if not file_path.is_file():
continue
filename = file_path.name
file_id = None
# Extract file ID from filename patterns
if len(filename) > 36:
potential_id = filename[:36]
if potential_id.count("-") == 4:
file_id = potential_id
if not file_id and filename.count("-") == 4 and len(filename) == 36:
file_id = filename
if not file_id:
for active_id in active_file_ids:
if active_id in filename:
file_id = active_id
break
if file_id and file_id not in active_file_ids:
try:
file_path.unlink()
deleted_count += 1
except Exception as e:
log.error(f"Failed to delete upload file {filename}: {e}")
except Exception as e:
log.error(f"Error cleaning uploads directory: {e}")
if deleted_count > 0:
log.info(f"Deleted {deleted_count} orphaned upload files")
def delete_inactive_users(
inactive_days: int, exempt_admin: bool = True, exempt_pending: bool = True
) -> int:
"""
Delete users who have been inactive for the specified number of days.
Returns the number of users deleted.
"""
if inactive_days is None:
return 0
cutoff_time = int(time.time()) - (inactive_days * 86400)
deleted_count = 0
try:
users_to_delete = []
# Get all users and check activity
all_users = Users.get_users()["users"]
for user in all_users:
# Skip if user is exempt
if exempt_admin and user.role == "admin":
continue
if exempt_pending and user.role == "pending":
continue
# Check if user is inactive based on last_active_at
if user.last_active_at < cutoff_time:
users_to_delete.append(user)
# Delete inactive users
for user in users_to_delete:
try:
# Delete the user - this will cascade to all their data
Users.delete_user_by_id(user.id)
deleted_count += 1
log.info(
f"Deleted inactive user: {user.email} (last active: {user.last_active_at})"
)
except Exception as e:
log.error(f"Failed to delete user {user.id}: {e}")
except Exception as e:
log.error(f"Error during inactive user deletion: {e}")
return deleted_count
def cleanup_audio_cache(max_age_days: Optional[int] = 30) -> None:
"""
Clean up audio cache files older than specified days.
"""
if max_age_days is None:
log.info("Skipping audio cache cleanup (max_age_days is None)")
return
cutoff_time = time.time() - (max_age_days * 86400)
deleted_count = 0
total_size_deleted = 0
audio_dirs = [
Path(CACHE_DIR) / "audio" / "speech",
Path(CACHE_DIR) / "audio" / "transcriptions",
]
for audio_dir in audio_dirs:
if not audio_dir.exists():
continue
try:
for file_path in audio_dir.iterdir():
if not file_path.is_file():
continue
file_mtime = file_path.stat().st_mtime
if file_mtime < cutoff_time:
try:
file_size = file_path.stat().st_size
file_path.unlink()
deleted_count += 1
total_size_deleted += file_size
except Exception as e:
log.error(f"Failed to delete audio file {file_path}: {e}")
except Exception as e:
log.error(f"Error cleaning audio directory {audio_dir}: {e}")
if deleted_count > 0:
size_mb = total_size_deleted / (1024 * 1024)
log.info(
f"Deleted {deleted_count} audio cache files ({size_mb:.1f} MB), older than {max_age_days} days"
)
@router.post("/", response_model=Union[bool, PrunePreviewResult])
async def prune_data(form_data: PruneDataForm, user=Depends(get_admin_user)):
"""
Prunes old and orphaned data using a safe, multi-stage process.
If dry_run=True (default), returns preview counts without deleting anything.
If dry_run=False, performs actual deletion and returns True on success.
"""
# Acquire lock to prevent concurrent operations (including previews)
if not PruneLock.acquire():
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail="A prune operation is already in progress. Please wait for it to complete."
)
try:
# Get vector database cleaner based on configuration
vector_cleaner = get_vector_database_cleaner()
if form_data.dry_run:
log.info("Starting data pruning preview (dry run)")
# Get counts for all enabled operations
active_file_ids = get_active_file_ids()
active_user_ids = {user.id for user in Users.get_users()["users"]}
active_kb_ids = {
kb.id
for kb in Knowledges.get_knowledge_bases()
if kb.user_id in active_user_ids
}
orphaned_counts = count_orphaned_records(form_data)
result = PrunePreviewResult(
inactive_users=count_inactive_users(
form_data.delete_inactive_users_days,
form_data.exempt_admin_users,
form_data.exempt_pending_users,
),
old_chats=count_old_chats(
form_data.days,
form_data.exempt_archived_chats,
form_data.exempt_chats_in_folders,
),
orphaned_chats=orphaned_counts["chats"],
orphaned_files=orphaned_counts["files"],
orphaned_tools=orphaned_counts["tools"],
orphaned_functions=orphaned_counts["functions"],
orphaned_prompts=orphaned_counts["prompts"],
orphaned_knowledge_bases=orphaned_counts["knowledge_bases"],
orphaned_models=orphaned_counts["models"],
orphaned_notes=orphaned_counts["notes"],
orphaned_folders=orphaned_counts["folders"],
orphaned_uploads=count_orphaned_uploads(active_file_ids),
orphaned_vector_collections=vector_cleaner.count_orphaned_collections(
active_file_ids, active_kb_ids
),
audio_cache_files=count_audio_cache_files(
form_data.audio_cache_max_age_days
),
)
log.info("Data pruning preview completed")
return result
# Actual deletion logic (dry_run=False)
# Acquire lock to prevent concurrent operations
if not PruneLock.acquire():
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail="A prune operation is already in progress. Please wait for it to complete."
)
try:
log.info("Starting data pruning process")
# Stage 0: Delete inactive users (if enabled)
deleted_users = 0
if form_data.delete_inactive_users_days is not None:
log.info(
f"Deleting users inactive for more than {form_data.delete_inactive_users_days} days"
)
deleted_users = delete_inactive_users(
form_data.delete_inactive_users_days,
form_data.exempt_admin_users,
form_data.exempt_pending_users,
)
if deleted_users > 0:
log.info(f"Deleted {deleted_users} inactive users")
else:
log.info("No inactive users found to delete")
else:
log.info("Skipping inactive user deletion (disabled)")
# Stage 1: Delete old chats based on user criteria
if form_data.days is not None:
cutoff_time = int(time.time()) - (form_data.days * 86400)
chats_to_delete = []
for chat in Chats.get_chats():
if chat.updated_at < cutoff_time:
if form_data.exempt_archived_chats and chat.archived:
continue
if form_data.exempt_chats_in_folders and (
getattr(chat, "folder_id", None) is not None
or getattr(chat, "pinned", False)
):
continue
chats_to_delete.append(chat)
if chats_to_delete:
log.info(
f"Deleting {len(chats_to_delete)} old chats (older than {form_data.days} days)"
)
for chat in chats_to_delete:
Chats.delete_chat_by_id(chat.id)
else:
log.info(f"No chats found older than {form_data.days} days")
else:
log.info("Skipping chat deletion (days parameter is None)")
# Stage 2: Build preservation set
log.info("Building preservation set")
active_user_ids = {user.id for user in Users.get_users()["users"]}
log.info(f"Found {len(active_user_ids)} active users")
active_kb_ids = set()
knowledge_bases = Knowledges.get_knowledge_bases()
for kb in knowledge_bases:
if kb.user_id in active_user_ids:
active_kb_ids.add(kb.id)
log.info(f"Found {len(active_kb_ids)} active knowledge bases")
active_file_ids = get_active_file_ids()
# Stage 3: Delete orphaned database records
log.info("Deleting orphaned database records")
deleted_files = 0
for file_record in Files.get_files():
should_delete = (
file_record.id not in active_file_ids
or file_record.user_id not in active_user_ids
)
if should_delete:
if safe_delete_file_by_id(file_record.id):
deleted_files += 1
if deleted_files > 0:
log.info(f"Deleted {deleted_files} orphaned files")
deleted_kbs = 0
if form_data.delete_orphaned_knowledge_bases:
for kb in knowledge_bases:
if kb.user_id not in active_user_ids:
if vector_cleaner.delete_collection(kb.id):
Knowledges.delete_knowledge_by_id(kb.id)
deleted_kbs += 1
if deleted_kbs > 0:
log.info(f"Deleted {deleted_kbs} orphaned knowledge bases")
else:
log.info("Skipping knowledge base deletion (disabled)")
deleted_others = 0
if form_data.delete_orphaned_chats:
chats_deleted = 0
for chat in Chats.get_chats():
if chat.user_id not in active_user_ids:
Chats.delete_chat_by_id(chat.id)
chats_deleted += 1
deleted_others += 1
if chats_deleted > 0:
log.info(f"Deleted {chats_deleted} orphaned chats")
else:
log.info("Skipping orphaned chat deletion (disabled)")
if form_data.delete_orphaned_tools:
tools_deleted = 0
for tool in Tools.get_tools():
if tool.user_id not in active_user_ids:
Tools.delete_tool_by_id(tool.id)
tools_deleted += 1
deleted_others += 1
if tools_deleted > 0:
log.info(f"Deleted {tools_deleted} orphaned tools")
else:
log.info("Skipping tool deletion (disabled)")
if form_data.delete_orphaned_functions:
functions_deleted = 0
for function in Functions.get_functions():
if function.user_id not in active_user_ids:
Functions.delete_function_by_id(function.id)
functions_deleted += 1
deleted_others += 1
if functions_deleted > 0:
log.info(f"Deleted {functions_deleted} orphaned functions")
else:
log.info("Skipping function deletion (disabled)")
if form_data.delete_orphaned_notes:
notes_deleted = 0
for note in Notes.get_notes():
if note.user_id not in active_user_ids:
Notes.delete_note_by_id(note.id)
notes_deleted += 1
deleted_others += 1
if notes_deleted > 0:
log.info(f"Deleted {notes_deleted} orphaned notes")
else:
log.info("Skipping note deletion (disabled)")
if form_data.delete_orphaned_prompts:
prompts_deleted = 0
for prompt in Prompts.get_prompts():
if prompt.user_id not in active_user_ids:
Prompts.delete_prompt_by_command(prompt.command)
prompts_deleted += 1
deleted_others += 1
if prompts_deleted > 0:
log.info(f"Deleted {prompts_deleted} orphaned prompts")
else:
log.info("Skipping prompt deletion (disabled)")
if form_data.delete_orphaned_models:
models_deleted = 0
for model in Models.get_all_models():
if model.user_id not in active_user_ids:
Models.delete_model_by_id(model.id)
models_deleted += 1
deleted_others += 1
if models_deleted > 0:
log.info(f"Deleted {models_deleted} orphaned models")
else:
log.info("Skipping model deletion (disabled)")
if form_data.delete_orphaned_folders:
folders_deleted = 0
for folder in Folders.get_all_folders():
if folder.user_id not in active_user_ids:
Folders.delete_folder_by_id_and_user_id(
folder.id, folder.user_id
)
folders_deleted += 1
deleted_others += 1
if folders_deleted > 0:
log.info(f"Deleted {folders_deleted} orphaned folders")
else:
log.info("Skipping folder deletion (disabled)")
if deleted_others > 0:
log.info(f"Total other orphaned records deleted: {deleted_others}")
# Stage 4: Clean up orphaned physical files
log.info("Cleaning up orphaned physical files")
final_active_file_ids = get_active_file_ids()
final_active_kb_ids = {kb.id for kb in Knowledges.get_knowledge_bases()}
cleanup_orphaned_uploads(final_active_file_ids)
# Use modular vector database cleanup
warnings = []
deleted_vector_count, vector_error = vector_cleaner.cleanup_orphaned_collections(
final_active_file_ids, final_active_kb_ids
)
if vector_error:
warnings.append(f"Vector cleanup warning: {vector_error}")
log.warning(f"Vector cleanup completed with errors: {vector_error}")
# Use modular vector database cleanup
warnings = []
deleted_vector_count, vector_error = vector_cleaner.cleanup_orphaned_collections(
final_active_file_ids, final_active_kb_ids
)
if vector_error:
warnings.append(f"Vector cleanup warning: {vector_error}")
log.warning(f"Vector cleanup completed with errors: {vector_error}")
# Stage 6: Database optimization (optional)
if form_data.run_vacuum:
log.info("Optimizing database with VACUUM (this may take a while and lock the database)")
# Stage 6: Database optimization (optional)
if form_data.run_vacuum:
log.info("Optimizing database with VACUUM (this may take a while and lock the database)")
try:
with get_db() as db:
db.execute(text("VACUUM"))
log.info("Vacuumed main database")
except Exception as e:
log.error(f"Failed to vacuum main database: {e}")
# Vector database-specific optimization
if isinstance(vector_cleaner, ChromaDatabaseCleaner):
try:
with sqlite3.connect(str(vector_cleaner.chroma_db_path)) as conn:
conn.execute("VACUUM")
log.info("Vacuumed ChromaDB database")
except Exception as e:
log.error(f"Failed to vacuum ChromaDB database: {e}")
elif (
isinstance(vector_cleaner, PGVectorDatabaseCleaner)
and vector_cleaner.session
):
try:
vector_cleaner.session.execute(text("VACUUM ANALYZE"))
vector_cleaner.session.commit()
log.info("Executed VACUUM ANALYZE on PostgreSQL database")
except Exception as e:
log.error(f"Failed to vacuum PostgreSQL database: {e}")
else:
log.info("Skipping VACUUM optimization (not enabled)")
# Log any warnings collected during pruning
if warnings:
log.warning(f"Data pruning completed with warnings: {'; '.join(warnings)}")
log.info("Data pruning completed successfully")
return True
finally:
# Always release lock, even if operation fails
PruneLock.release()
except Exception as e:
log.exception(f"Error during data pruning: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT("Data pruning failed"),
)
finally:
# Always release lock, even if operation fails
PruneLock.release()