open-webui/backend/open_webui/retrieval/vector/dbs/qdrant.py
guenhter a66206f44f feat: support better qdrant collection isolation
The prefix string for qdrant collection is now
configurable,  which means the same qdrant cluster
can be used to host more open webui instances and
to be able to separate the collections between the
different owui instances.
2025-06-26 13:52:26 +02:00

223 lines
8 KiB
Python

from typing import Optional
import logging
from urllib.parse import urlparse
from qdrant_client import QdrantClient as Qclient
from qdrant_client.http.models import PointStruct
from qdrant_client.models import models
from open_webui.retrieval.vector.main import (
VectorDBBase,
VectorItem,
SearchResult,
GetResult,
)
from open_webui.config import (
QDRANT_URI,
QDRANT_API_KEY,
QDRANT_ON_DISK,
QDRANT_GRPC_PORT,
QDRANT_PREFER_GRPC,
QDRANT_COLLECTION_PREFIX,
)
from open_webui.env import SRC_LOG_LEVELS
NO_LIMIT = 999999999
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
class QdrantClient(VectorDBBase):
def __init__(self):
self.collection_prefix = QDRANT_COLLECTION_PREFIX
self.QDRANT_URI = QDRANT_URI
self.QDRANT_API_KEY = QDRANT_API_KEY
self.QDRANT_ON_DISK = QDRANT_ON_DISK
self.PREFER_GRPC = QDRANT_PREFER_GRPC
self.GRPC_PORT = QDRANT_GRPC_PORT
if not self.QDRANT_URI:
self.client = None
return
# Unified handling for either scheme
parsed = urlparse(self.QDRANT_URI)
host = parsed.hostname or self.QDRANT_URI
http_port = parsed.port or 6333 # default REST port
if self.PREFER_GRPC:
self.client = Qclient(
host=host,
port=http_port,
grpc_port=self.GRPC_PORT,
prefer_grpc=self.PREFER_GRPC,
api_key=self.QDRANT_API_KEY,
)
else:
self.client = Qclient(url=self.QDRANT_URI, api_key=self.QDRANT_API_KEY)
def _result_to_get_result(self, points) -> GetResult:
ids = []
documents = []
metadatas = []
for point in points:
payload = point.payload
ids.append(point.id)
documents.append(payload["text"])
metadatas.append(payload["metadata"])
return GetResult(
**{
"ids": [ids],
"documents": [documents],
"metadatas": [metadatas],
}
)
def _create_collection(self, collection_name: str, dimension: int):
collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}"
self.client.create_collection(
collection_name=collection_name_with_prefix,
vectors_config=models.VectorParams(
size=dimension,
distance=models.Distance.COSINE,
on_disk=self.QDRANT_ON_DISK,
),
)
log.info(f"collection {collection_name_with_prefix} successfully created!")
def _create_collection_if_not_exists(self, collection_name, dimension):
if not self.has_collection(collection_name=collection_name):
self._create_collection(
collection_name=collection_name, dimension=dimension
)
def _create_points(self, items: list[VectorItem]):
return [
PointStruct(
id=item["id"],
vector=item["vector"],
payload={"text": item["text"], "metadata": item["metadata"]},
)
for item in items
]
def has_collection(self, collection_name: str) -> bool:
return self.client.collection_exists(
f"{self.collection_prefix}_{collection_name}"
)
def delete_collection(self, collection_name: str):
return self.client.delete_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
)
def search(
self, collection_name: str, vectors: list[list[float | int]], limit: int
) -> Optional[SearchResult]:
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
if limit is None:
limit = NO_LIMIT # otherwise qdrant would set limit to 10!
query_response = self.client.query_points(
collection_name=f"{self.collection_prefix}_{collection_name}",
query=vectors[0],
limit=limit,
)
get_result = self._result_to_get_result(query_response.points)
return SearchResult(
ids=get_result.ids,
documents=get_result.documents,
metadatas=get_result.metadatas,
# qdrant distance is [-1, 1], normalize to [0, 1]
distances=[[(point.score + 1.0) / 2.0 for point in query_response.points]],
)
def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
# Construct the filter string for querying
if not self.has_collection(collection_name):
return None
try:
if limit is None:
limit = NO_LIMIT # otherwise qdrant would set limit to 10!
field_conditions = []
for key, value in filter.items():
field_conditions.append(
models.FieldCondition(
key=f"metadata.{key}", match=models.MatchValue(value=value)
)
)
points = self.client.query_points(
collection_name=f"{self.collection_prefix}_{collection_name}",
query_filter=models.Filter(should=field_conditions),
limit=limit,
)
return self._result_to_get_result(points.points)
except Exception as e:
log.exception(f"Error querying a collection '{collection_name}': {e}")
return None
def get(self, collection_name: str) -> Optional[GetResult]:
# Get all the items in the collection.
points = self.client.query_points(
collection_name=f"{self.collection_prefix}_{collection_name}",
limit=NO_LIMIT, # otherwise qdrant would set limit to 10!
)
return self._result_to_get_result(points.points)
def insert(self, collection_name: str, items: list[VectorItem]):
# Insert the items into the collection, if the collection does not exist, it will be created.
self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
points = self._create_points(items)
self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points)
def upsert(self, collection_name: str, items: list[VectorItem]):
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
points = self._create_points(items)
return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points)
def delete(
self,
collection_name: str,
ids: Optional[list[str]] = None,
filter: Optional[dict] = None,
):
# Delete the items from the collection based on the ids.
field_conditions = []
if ids:
for id_value in ids:
field_conditions.append(
models.FieldCondition(
key="metadata.id",
match=models.MatchValue(value=id_value),
),
),
elif filter:
for key, value in filter.items():
field_conditions.append(
models.FieldCondition(
key=f"metadata.{key}",
match=models.MatchValue(value=value),
),
),
return self.client.delete(
collection_name=f"{self.collection_prefix}_{collection_name}",
points_selector=models.FilterSelector(
filter=models.Filter(must=field_conditions)
),
)
def reset(self):
# Resets the database. This will delete all collections and item entries.
collection_names = self.client.get_collections().collections
for collection_name in collection_names:
if collection_name.name.startswith(self.collection_prefix):
self.client.delete_collection(collection_name=collection_name.name)