open-webui/backend/open_webui/config.py
Tim Jaeryang Baek 8d7d79d54b
0.6.33 (#18118)
* feat: improve ollama model management experience

This commit introduces several improvements to the Ollama model management modal:

- Adds a cancel button to the model pulling operation, using the existing 'x' button pattern.
- Adds a cancel button to the "Update All" models operation, allowing the user to cancel the update for the currently processing model.
- Cleans up toast notifications when updating all models. A single toast is now shown at the beginning and a summary toast at the end, preventing notification spam.
- Refactors the `ManageOllama.svelte` component to support these new cancellation features.
- Adds tooltips to all buttons in the modal to improve clarity.
- Disables buttons when their corresponding input fields are empty to prevent accidental clicks.

* fix

* i18n: improve Chinese translation

* fix: handle non‑UTF8 chars in third‑party responses without error

* German translation of new strings in i18n

* log web search queries only with level 'debug' instead of 'info'

* Tool calls now only include text and dont inlcude other content like image b64

* fix onedrive

* fix: discovery url

* fix: default permissions not being loaded

* fix: ai hallucination

* fix: non rich text input copy

* refac: rm print statements

* refac: disable direct models from model editors

* refac/fix: do not process xlsx files with azure doc intelligence

* Update pull_request_template.md

* Update generated image translation in DE-de

* added missing danish translations

* feat(onedrive): Enable search and "My Organization" pivot

* style(onedrive): Formatting fix

* feat: Implement toggling for vertical and horizontal flow layouts

This commit introduces the necessary logic and UI controls to allow users to switch the Flow component layout between vertical and horizontal orientations.

*   **`Flow.svelte` Refactoring:**
    *   Updates logic for calculating level offsets and node positions to consistently respect the current flow orientation.
    *   Adds a control panel using `<Controls>` and `<SwitchButton>` components.
    *   Provides user interface elements to easily switch the flow layout between horizontal and vertical orientations.

* build(deps): bump pydantic from 2.11.7 to 2.11.9 in /backend

Bumps [pydantic](https://github.com/pydantic/pydantic) from 2.11.7 to 2.11.9.
- [Release notes](https://github.com/pydantic/pydantic/releases)
- [Changelog](https://github.com/pydantic/pydantic/blob/v2.11.9/HISTORY.md)
- [Commits](https://github.com/pydantic/pydantic/compare/v2.11.7...v2.11.9)

---
updated-dependencies:
- dependency-name: pydantic
  dependency-version: 2.11.9
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>

* build(deps): bump black from 25.1.0 to 25.9.0 in /backend

Bumps [black](https://github.com/psf/black) from 25.1.0 to 25.9.0.
- [Release notes](https://github.com/psf/black/releases)
- [Changelog](https://github.com/psf/black/blob/main/CHANGES.md)
- [Commits](https://github.com/psf/black/compare/25.1.0...25.9.0)

---
updated-dependencies:
- dependency-name: black
  dependency-version: 25.9.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* build(deps): bump markdown from 3.8.2 to 3.9 in /backend

Bumps [markdown](https://github.com/Python-Markdown/markdown) from 3.8.2 to 3.9.
- [Release notes](https://github.com/Python-Markdown/markdown/releases)
- [Changelog](https://github.com/Python-Markdown/markdown/blob/master/docs/changelog.md)
- [Commits](https://github.com/Python-Markdown/markdown/compare/3.8.2...3.9.0)

---
updated-dependencies:
- dependency-name: markdown
  dependency-version: '3.9'
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* build(deps): bump chromadb from 1.0.20 to 1.1.0 in /backend

Bumps [chromadb](https://github.com/chroma-core/chroma) from 1.0.20 to 1.1.0.
- [Release notes](https://github.com/chroma-core/chroma/releases)
- [Changelog](https://github.com/chroma-core/chroma/blob/main/RELEASE_PROCESS.md)
- [Commits](https://github.com/chroma-core/chroma/compare/1.0.20...1.1.0)

---
updated-dependencies:
- dependency-name: chromadb
  dependency-version: 1.1.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* build(deps): bump opentelemetry-api from 1.36.0 to 1.37.0

Bumps [opentelemetry-api](https://github.com/open-telemetry/opentelemetry-python) from 1.36.0 to 1.37.0.
- [Release notes](https://github.com/open-telemetry/opentelemetry-python/releases)
- [Changelog](https://github.com/open-telemetry/opentelemetry-python/blob/main/CHANGELOG.md)
- [Commits](https://github.com/open-telemetry/opentelemetry-python/compare/v1.36.0...v1.37.0)

---
updated-dependencies:
- dependency-name: opentelemetry-api
  dependency-version: 1.37.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* refac: ollama embed form data

* fix: non rich text handling

* fix: oauth client registration

* refac

* chore: dep bump

* chore: fastapi bump

* chore/refac: bump bcrypt and remove passlib

* Improving Korean Translation

* refac

* Improving Korean Translation

* feat: PWA share_target implementation

Co-Authored-By: gjveld <19951982+gjveld@users.noreply.github.com>

* refac: message input mobile detection behaviour

* feat: model_ids per folder

* Update translation.json (pt-BR)

inclusion of new translations of items that have been added

* refac

* refac

* refac

* refac

* refac/fix: temp chat

* refac

* refac: stop task

* refac/fix: azure audio escape

* refac: external tool validation

* refac/enh: start.sh additional args support

* refac

* refac: styling

* refac/fix: direct connection floating action buttons

* refac/fix: system prompt duplication

* refac/enh: openai tts additional params support

* refac

* feat: load data in parallel to accelerate page loading speed

* i18n: improve Chinese translation

* refac

* refac: model selector

* UPD: i18n es-ES Translation v0.6.33

UPD: i18n es-ES Translation v0.6.33

Updated new strings.

* refac

* improved query pref by querying only relevant columns

* refac/enh: docling params

* refac

* refac: openai additional headers support

* refac

* FEAT: Add Vega Char Visualizer Renderer

### FEAT: Add Vega Char Visualizer Renderer

Feature required in https://github.com/open-webui/open-webui/discussions/18022

Added npm vega lib to package.json
Added function for visualization renderer to src/libs/utils/index.ts
Added logic to src/lib/components/chat/Messages/CodeBlock.svelte

The treatment is similar as for mermaid diagrams.

Reference: https://vega.github.io/vega/

* refac

* chore

* refac

* FEAT: Add Vega-Lite Char Visualizer Renderer

### FEAT: Add Vega Char Visualizer Renderer

Add suport for Vega-Lite Specifications.
Vega-Lite is a "compiled" version of Vega Char Visualizer.
For be rendered with Vega it have to be compiled.
This PR add the check and compile if necessary, is a complement of recent Vega Renderer Feature added.

* refac

* refac/fix: switch

* enh/refac: url input handling

* refac

* refac: styling

* UPD: Add Validators & Error Toast for Mermaid & Vega diagrams

### UPD: Feat:  Add Validators & Error Toast for Mermaid & Vega diagrams

Description:
As many time the diagrams generated or entered have syntax errors the diagrams are not rendered due to that errors, but as there isn't any notification is difficult to know what happend.

This PR add validator and toast notification when error on Mermaid and Vega/Vega-Lite diagrams, helping the user to fix its.

* removed redundant knowledge API call

* Fix Code Format

* refac: model workspace view

* refac

* refac: knowledge

* refac: prompts

* refac: tools

* refac

* feat: attach folder

* refac: make tencentcloud-sdk-python optional

* refac/fix: oauth

* enh: ENABLE_OAUTH_EMAIL_FALLBACK

* refac/fix: folders

* Update requirements.txt

* Update pyproject.toml

* UPD: Add Validators & Error Toast for Mermaid & Vega diagrams

### UPD: Feat:  Add Validators & Error Toast for Mermaid & Vega diagrams

Description:
As many time the diagrams generated or entered have syntax errors the diagrams are not rendered due to that errors, but as there isn't any notification is difficult to know what happend.

This PR add validator and toast notification when error on Mermaid and Vega/Vega-Lite diagrams, helping the user to fix its.

Note:
Another possibility of integrating this Graph Visualizer is through its svelte component: https://github.com/vega/svelte-vega/tree/main/packages/svelte-vega

* Removed unused toast import & Code Format

* refac

* refac: external tool server view

* refac

* refac: overview

* refac: styling

* refac

* Update bug_report.yaml

* refac

* refac

* refac

* refac

* refac: oauth client fallback

* Fixed: Cannot handle batch sizes > 1 if no padding token is defined

Fixes Cannot handle batch sizes > 1 if no padding token is defined

For reranker models that do not have this defined in their config by using the eos_token_id if present as pad_token_id.

* refac: fallback to reasoning content

* fix(i18n): corrected typo in Spanish translation for "Reasoning Tags"

Typo fixed in Spanish translation file at line 1240 of `open-webui/src/lib/i18n/locales/es-ES/translation.json`:

- Incorrect: "Eriquetas de Razonamiento"
- Correct:   "Etiquetas de Razonamiento"

This improves clarity and consistency in the UI.

* refac/fix: ENABLE_STAR_SESSIONS_MIDDLEWARE

* refac/fix: redirect

* refac

* refac

* refac

* refac: web search error handling

* refac: source parsing

* refac: functions

* refac

* refac/enh: note pdf export

* refac/fix: mcp oauth2.1

* chore: format

* chore: Changelog (#17995)

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* Update CHANGELOG.md

* refac

* chore: dep bump

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: silentoplayz <jacwoo21@outlook.com>
Co-authored-by: Shirasawa <764798966@qq.com>
Co-authored-by: Jan Kessler <jakessle@uni-mainz.de>
Co-authored-by: Jacob Leksan <jacob.leksan@expedient.com>
Co-authored-by: Classic298 <27028174+Classic298@users.noreply.github.com>
Co-authored-by: sinejespersen <sinejespersen@protonmail.com>
Co-authored-by: Selene Blok <selene.blok@rws.nl>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Cyp <cypher9715@naver.com>
Co-authored-by: gjveld <19951982+gjveld@users.noreply.github.com>
Co-authored-by: joaoback <156559121+joaoback@users.noreply.github.com>
Co-authored-by: _00_ <131402327+rgaricano@users.noreply.github.com>
Co-authored-by: expruc <eygabi01@gmail.com>
Co-authored-by: YetheSamartaka <55753928+YetheSamartaka@users.noreply.github.com>
Co-authored-by: Akutangulo <akutangulo@gmail.com>
2025-10-07 16:20:27 -05:00

3545 lines
108 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import logging
import os
import shutil
import base64
import redis
from datetime import datetime
from pathlib import Path
from typing import Generic, Union, Optional, TypeVar
from urllib.parse import urlparse
import requests
from pydantic import BaseModel
from sqlalchemy import JSON, Column, DateTime, Integer, func
from authlib.integrations.starlette_client import OAuth
from open_webui.env import (
DATA_DIR,
DATABASE_URL,
ENV,
REDIS_URL,
REDIS_KEY_PREFIX,
REDIS_SENTINEL_HOSTS,
REDIS_SENTINEL_PORT,
FRONTEND_BUILD_DIR,
OFFLINE_MODE,
OPEN_WEBUI_DIR,
WEBUI_AUTH,
WEBUI_FAVICON_URL,
WEBUI_NAME,
log,
)
from open_webui.internal.db import Base, get_db
from open_webui.utils.redis import get_redis_connection
class EndpointFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
return record.getMessage().find("/health") == -1
# Filter out /endpoint
logging.getLogger("uvicorn.access").addFilter(EndpointFilter())
####################################
# Config helpers
####################################
# Function to run the alembic migrations
def run_migrations():
log.info("Running migrations")
try:
from alembic import command
from alembic.config import Config
alembic_cfg = Config(OPEN_WEBUI_DIR / "alembic.ini")
# Set the script location dynamically
migrations_path = OPEN_WEBUI_DIR / "migrations"
alembic_cfg.set_main_option("script_location", str(migrations_path))
command.upgrade(alembic_cfg, "head")
except Exception as e:
log.exception(f"Error running migrations: {e}")
run_migrations()
class Config(Base):
__tablename__ = "config"
id = Column(Integer, primary_key=True)
data = Column(JSON, nullable=False)
version = Column(Integer, nullable=False, default=0)
created_at = Column(DateTime, nullable=False, server_default=func.now())
updated_at = Column(DateTime, nullable=True, onupdate=func.now())
def load_json_config():
with open(f"{DATA_DIR}/config.json", "r") as file:
return json.load(file)
def save_to_db(data):
with get_db() as db:
existing_config = db.query(Config).first()
if not existing_config:
new_config = Config(data=data, version=0)
db.add(new_config)
else:
existing_config.data = data
existing_config.updated_at = datetime.now()
db.add(existing_config)
db.commit()
def reset_config():
with get_db() as db:
db.query(Config).delete()
db.commit()
# When initializing, check if config.json exists and migrate it to the database
if os.path.exists(f"{DATA_DIR}/config.json"):
data = load_json_config()
save_to_db(data)
os.rename(f"{DATA_DIR}/config.json", f"{DATA_DIR}/old_config.json")
DEFAULT_CONFIG = {
"version": 0,
"ui": {},
}
def get_config():
with get_db() as db:
config_entry = db.query(Config).order_by(Config.id.desc()).first()
return config_entry.data if config_entry else DEFAULT_CONFIG
CONFIG_DATA = get_config()
def get_config_value(config_path: str):
path_parts = config_path.split(".")
cur_config = CONFIG_DATA
for key in path_parts:
if key in cur_config:
cur_config = cur_config[key]
else:
return None
return cur_config
PERSISTENT_CONFIG_REGISTRY = []
def save_config(config):
global CONFIG_DATA
global PERSISTENT_CONFIG_REGISTRY
try:
save_to_db(config)
CONFIG_DATA = config
# Trigger updates on all registered PersistentConfig entries
for config_item in PERSISTENT_CONFIG_REGISTRY:
config_item.update()
except Exception as e:
log.exception(e)
return False
return True
T = TypeVar("T")
ENABLE_PERSISTENT_CONFIG = (
os.environ.get("ENABLE_PERSISTENT_CONFIG", "True").lower() == "true"
)
class PersistentConfig(Generic[T]):
def __init__(self, env_name: str, config_path: str, env_value: T):
self.env_name = env_name
self.config_path = config_path
self.env_value = env_value
self.config_value = get_config_value(config_path)
if self.config_value is not None and ENABLE_PERSISTENT_CONFIG:
if (
self.config_path.startswith("oauth.")
and not ENABLE_OAUTH_PERSISTENT_CONFIG
):
log.info(
f"Skipping loading of '{env_name}' as OAuth persistent config is disabled"
)
self.value = env_value
else:
log.info(f"'{env_name}' loaded from the latest database entry")
self.value = self.config_value
else:
self.value = env_value
PERSISTENT_CONFIG_REGISTRY.append(self)
def __str__(self):
return str(self.value)
@property
def __dict__(self):
raise TypeError(
"PersistentConfig object cannot be converted to dict, use config_get or .value instead."
)
def __getattribute__(self, item):
if item == "__dict__":
raise TypeError(
"PersistentConfig object cannot be converted to dict, use config_get or .value instead."
)
return super().__getattribute__(item)
def update(self):
new_value = get_config_value(self.config_path)
if new_value is not None:
self.value = new_value
log.info(f"Updated {self.env_name} to new value {self.value}")
def save(self):
log.info(f"Saving '{self.env_name}' to the database")
path_parts = self.config_path.split(".")
sub_config = CONFIG_DATA
for key in path_parts[:-1]:
if key not in sub_config:
sub_config[key] = {}
sub_config = sub_config[key]
sub_config[path_parts[-1]] = self.value
save_to_db(CONFIG_DATA)
self.config_value = self.value
class AppConfig:
_redis: Union[redis.Redis, redis.cluster.RedisCluster] = None
_redis_key_prefix: str
_state: dict[str, PersistentConfig]
def __init__(
self,
redis_url: Optional[str] = None,
redis_sentinels: Optional[list] = [],
redis_cluster: Optional[bool] = False,
redis_key_prefix: str = "open-webui",
):
if redis_url:
super().__setattr__("_redis_key_prefix", redis_key_prefix)
super().__setattr__(
"_redis",
get_redis_connection(
redis_url,
redis_sentinels,
redis_cluster,
decode_responses=True,
),
)
super().__setattr__("_state", {})
def __setattr__(self, key, value):
if isinstance(value, PersistentConfig):
self._state[key] = value
else:
self._state[key].value = value
self._state[key].save()
if self._redis:
redis_key = f"{self._redis_key_prefix}:config:{key}"
self._redis.set(redis_key, json.dumps(self._state[key].value))
def __getattr__(self, key):
if key not in self._state:
raise AttributeError(f"Config key '{key}' not found")
# If Redis is available, check for an updated value
if self._redis:
redis_key = f"{self._redis_key_prefix}:config:{key}"
redis_value = self._redis.get(redis_key)
if redis_value is not None:
try:
decoded_value = json.loads(redis_value)
# Update the in-memory value if different
if self._state[key].value != decoded_value:
self._state[key].value = decoded_value
log.info(f"Updated {key} from Redis: {decoded_value}")
except json.JSONDecodeError:
log.error(f"Invalid JSON format in Redis for {key}: {redis_value}")
return self._state[key].value
####################################
# WEBUI_AUTH (Required for security)
####################################
ENABLE_API_KEY = PersistentConfig(
"ENABLE_API_KEY",
"auth.api_key.enable",
os.environ.get("ENABLE_API_KEY", "True").lower() == "true",
)
ENABLE_API_KEY_ENDPOINT_RESTRICTIONS = PersistentConfig(
"ENABLE_API_KEY_ENDPOINT_RESTRICTIONS",
"auth.api_key.endpoint_restrictions",
os.environ.get("ENABLE_API_KEY_ENDPOINT_RESTRICTIONS", "False").lower() == "true",
)
API_KEY_ALLOWED_ENDPOINTS = PersistentConfig(
"API_KEY_ALLOWED_ENDPOINTS",
"auth.api_key.allowed_endpoints",
os.environ.get("API_KEY_ALLOWED_ENDPOINTS", ""),
)
JWT_EXPIRES_IN = PersistentConfig(
"JWT_EXPIRES_IN", "auth.jwt_expiry", os.environ.get("JWT_EXPIRES_IN", "-1")
)
####################################
# OAuth config
####################################
ENABLE_OAUTH_PERSISTENT_CONFIG = (
os.environ.get("ENABLE_OAUTH_PERSISTENT_CONFIG", "False").lower() == "true"
)
ENABLE_OAUTH_SIGNUP = PersistentConfig(
"ENABLE_OAUTH_SIGNUP",
"oauth.enable_signup",
os.environ.get("ENABLE_OAUTH_SIGNUP", "False").lower() == "true",
)
OAUTH_MERGE_ACCOUNTS_BY_EMAIL = PersistentConfig(
"OAUTH_MERGE_ACCOUNTS_BY_EMAIL",
"oauth.merge_accounts_by_email",
os.environ.get("OAUTH_MERGE_ACCOUNTS_BY_EMAIL", "False").lower() == "true",
)
OAUTH_PROVIDERS = {}
GOOGLE_CLIENT_ID = PersistentConfig(
"GOOGLE_CLIENT_ID",
"oauth.google.client_id",
os.environ.get("GOOGLE_CLIENT_ID", ""),
)
GOOGLE_CLIENT_SECRET = PersistentConfig(
"GOOGLE_CLIENT_SECRET",
"oauth.google.client_secret",
os.environ.get("GOOGLE_CLIENT_SECRET", ""),
)
GOOGLE_OAUTH_SCOPE = PersistentConfig(
"GOOGLE_OAUTH_SCOPE",
"oauth.google.scope",
os.environ.get("GOOGLE_OAUTH_SCOPE", "openid email profile"),
)
GOOGLE_REDIRECT_URI = PersistentConfig(
"GOOGLE_REDIRECT_URI",
"oauth.google.redirect_uri",
os.environ.get("GOOGLE_REDIRECT_URI", ""),
)
MICROSOFT_CLIENT_ID = PersistentConfig(
"MICROSOFT_CLIENT_ID",
"oauth.microsoft.client_id",
os.environ.get("MICROSOFT_CLIENT_ID", ""),
)
MICROSOFT_CLIENT_SECRET = PersistentConfig(
"MICROSOFT_CLIENT_SECRET",
"oauth.microsoft.client_secret",
os.environ.get("MICROSOFT_CLIENT_SECRET", ""),
)
MICROSOFT_CLIENT_TENANT_ID = PersistentConfig(
"MICROSOFT_CLIENT_TENANT_ID",
"oauth.microsoft.tenant_id",
os.environ.get("MICROSOFT_CLIENT_TENANT_ID", ""),
)
MICROSOFT_CLIENT_LOGIN_BASE_URL = PersistentConfig(
"MICROSOFT_CLIENT_LOGIN_BASE_URL",
"oauth.microsoft.login_base_url",
os.environ.get(
"MICROSOFT_CLIENT_LOGIN_BASE_URL", "https://login.microsoftonline.com"
),
)
MICROSOFT_CLIENT_PICTURE_URL = PersistentConfig(
"MICROSOFT_CLIENT_PICTURE_URL",
"oauth.microsoft.picture_url",
os.environ.get(
"MICROSOFT_CLIENT_PICTURE_URL",
"https://graph.microsoft.com/v1.0/me/photo/$value",
),
)
MICROSOFT_OAUTH_SCOPE = PersistentConfig(
"MICROSOFT_OAUTH_SCOPE",
"oauth.microsoft.scope",
os.environ.get("MICROSOFT_OAUTH_SCOPE", "openid email profile"),
)
MICROSOFT_REDIRECT_URI = PersistentConfig(
"MICROSOFT_REDIRECT_URI",
"oauth.microsoft.redirect_uri",
os.environ.get("MICROSOFT_REDIRECT_URI", ""),
)
GITHUB_CLIENT_ID = PersistentConfig(
"GITHUB_CLIENT_ID",
"oauth.github.client_id",
os.environ.get("GITHUB_CLIENT_ID", ""),
)
GITHUB_CLIENT_SECRET = PersistentConfig(
"GITHUB_CLIENT_SECRET",
"oauth.github.client_secret",
os.environ.get("GITHUB_CLIENT_SECRET", ""),
)
GITHUB_CLIENT_SCOPE = PersistentConfig(
"GITHUB_CLIENT_SCOPE",
"oauth.github.scope",
os.environ.get("GITHUB_CLIENT_SCOPE", "user:email"),
)
GITHUB_CLIENT_REDIRECT_URI = PersistentConfig(
"GITHUB_CLIENT_REDIRECT_URI",
"oauth.github.redirect_uri",
os.environ.get("GITHUB_CLIENT_REDIRECT_URI", ""),
)
OAUTH_CLIENT_ID = PersistentConfig(
"OAUTH_CLIENT_ID",
"oauth.oidc.client_id",
os.environ.get("OAUTH_CLIENT_ID", ""),
)
OAUTH_CLIENT_SECRET = PersistentConfig(
"OAUTH_CLIENT_SECRET",
"oauth.oidc.client_secret",
os.environ.get("OAUTH_CLIENT_SECRET", ""),
)
OPENID_PROVIDER_URL = PersistentConfig(
"OPENID_PROVIDER_URL",
"oauth.oidc.provider_url",
os.environ.get("OPENID_PROVIDER_URL", ""),
)
OPENID_REDIRECT_URI = PersistentConfig(
"OPENID_REDIRECT_URI",
"oauth.oidc.redirect_uri",
os.environ.get("OPENID_REDIRECT_URI", ""),
)
OAUTH_SCOPES = PersistentConfig(
"OAUTH_SCOPES",
"oauth.oidc.scopes",
os.environ.get("OAUTH_SCOPES", "openid email profile"),
)
OAUTH_TIMEOUT = PersistentConfig(
"OAUTH_TIMEOUT",
"oauth.oidc.oauth_timeout",
os.environ.get("OAUTH_TIMEOUT", ""),
)
OAUTH_TOKEN_ENDPOINT_AUTH_METHOD = PersistentConfig(
"OAUTH_TOKEN_ENDPOINT_AUTH_METHOD",
"oauth.oidc.token_endpoint_auth_method",
os.environ.get("OAUTH_TOKEN_ENDPOINT_AUTH_METHOD", None),
)
OAUTH_CODE_CHALLENGE_METHOD = PersistentConfig(
"OAUTH_CODE_CHALLENGE_METHOD",
"oauth.oidc.code_challenge_method",
os.environ.get("OAUTH_CODE_CHALLENGE_METHOD", None),
)
OAUTH_PROVIDER_NAME = PersistentConfig(
"OAUTH_PROVIDER_NAME",
"oauth.oidc.provider_name",
os.environ.get("OAUTH_PROVIDER_NAME", "SSO"),
)
OAUTH_SUB_CLAIM = PersistentConfig(
"OAUTH_SUB_CLAIM",
"oauth.oidc.sub_claim",
os.environ.get("OAUTH_SUB_CLAIM", None),
)
OAUTH_USERNAME_CLAIM = PersistentConfig(
"OAUTH_USERNAME_CLAIM",
"oauth.oidc.username_claim",
os.environ.get("OAUTH_USERNAME_CLAIM", "name"),
)
OAUTH_PICTURE_CLAIM = PersistentConfig(
"OAUTH_PICTURE_CLAIM",
"oauth.oidc.avatar_claim",
os.environ.get("OAUTH_PICTURE_CLAIM", "picture"),
)
OAUTH_EMAIL_CLAIM = PersistentConfig(
"OAUTH_EMAIL_CLAIM",
"oauth.oidc.email_claim",
os.environ.get("OAUTH_EMAIL_CLAIM", "email"),
)
OAUTH_GROUPS_CLAIM = PersistentConfig(
"OAUTH_GROUPS_CLAIM",
"oauth.oidc.group_claim",
os.environ.get("OAUTH_GROUPS_CLAIM", os.environ.get("OAUTH_GROUP_CLAIM", "groups")),
)
FEISHU_CLIENT_ID = PersistentConfig(
"FEISHU_CLIENT_ID",
"oauth.feishu.client_id",
os.environ.get("FEISHU_CLIENT_ID", ""),
)
FEISHU_CLIENT_SECRET = PersistentConfig(
"FEISHU_CLIENT_SECRET",
"oauth.feishu.client_secret",
os.environ.get("FEISHU_CLIENT_SECRET", ""),
)
FEISHU_OAUTH_SCOPE = PersistentConfig(
"FEISHU_OAUTH_SCOPE",
"oauth.feishu.scope",
os.environ.get("FEISHU_OAUTH_SCOPE", "contact:user.base:readonly"),
)
FEISHU_REDIRECT_URI = PersistentConfig(
"FEISHU_REDIRECT_URI",
"oauth.feishu.redirect_uri",
os.environ.get("FEISHU_REDIRECT_URI", ""),
)
ENABLE_OAUTH_ROLE_MANAGEMENT = PersistentConfig(
"ENABLE_OAUTH_ROLE_MANAGEMENT",
"oauth.enable_role_mapping",
os.environ.get("ENABLE_OAUTH_ROLE_MANAGEMENT", "False").lower() == "true",
)
ENABLE_OAUTH_GROUP_MANAGEMENT = PersistentConfig(
"ENABLE_OAUTH_GROUP_MANAGEMENT",
"oauth.enable_group_mapping",
os.environ.get("ENABLE_OAUTH_GROUP_MANAGEMENT", "False").lower() == "true",
)
ENABLE_OAUTH_GROUP_CREATION = PersistentConfig(
"ENABLE_OAUTH_GROUP_CREATION",
"oauth.enable_group_creation",
os.environ.get("ENABLE_OAUTH_GROUP_CREATION", "False").lower() == "true",
)
OAUTH_BLOCKED_GROUPS = PersistentConfig(
"OAUTH_BLOCKED_GROUPS",
"oauth.blocked_groups",
os.environ.get("OAUTH_BLOCKED_GROUPS", "[]"),
)
OAUTH_ROLES_CLAIM = PersistentConfig(
"OAUTH_ROLES_CLAIM",
"oauth.roles_claim",
os.environ.get("OAUTH_ROLES_CLAIM", "roles"),
)
OAUTH_ALLOWED_ROLES = PersistentConfig(
"OAUTH_ALLOWED_ROLES",
"oauth.allowed_roles",
[
role.strip()
for role in os.environ.get("OAUTH_ALLOWED_ROLES", "user,admin").split(",")
],
)
OAUTH_ADMIN_ROLES = PersistentConfig(
"OAUTH_ADMIN_ROLES",
"oauth.admin_roles",
[role.strip() for role in os.environ.get("OAUTH_ADMIN_ROLES", "admin").split(",")],
)
OAUTH_ALLOWED_DOMAINS = PersistentConfig(
"OAUTH_ALLOWED_DOMAINS",
"oauth.allowed_domains",
[
domain.strip()
for domain in os.environ.get("OAUTH_ALLOWED_DOMAINS", "*").split(",")
],
)
OAUTH_UPDATE_PICTURE_ON_LOGIN = PersistentConfig(
"OAUTH_UPDATE_PICTURE_ON_LOGIN",
"oauth.update_picture_on_login",
os.environ.get("OAUTH_UPDATE_PICTURE_ON_LOGIN", "False").lower() == "true",
)
def load_oauth_providers():
OAUTH_PROVIDERS.clear()
if GOOGLE_CLIENT_ID.value and GOOGLE_CLIENT_SECRET.value:
def google_oauth_register(oauth: OAuth):
client = oauth.register(
name="google",
client_id=GOOGLE_CLIENT_ID.value,
client_secret=GOOGLE_CLIENT_SECRET.value,
server_metadata_url="https://accounts.google.com/.well-known/openid-configuration",
client_kwargs={
"scope": GOOGLE_OAUTH_SCOPE.value,
**(
{"timeout": int(OAUTH_TIMEOUT.value)}
if OAUTH_TIMEOUT.value
else {}
),
},
redirect_uri=GOOGLE_REDIRECT_URI.value,
)
return client
OAUTH_PROVIDERS["google"] = {
"redirect_uri": GOOGLE_REDIRECT_URI.value,
"register": google_oauth_register,
}
if (
MICROSOFT_CLIENT_ID.value
and MICROSOFT_CLIENT_SECRET.value
and MICROSOFT_CLIENT_TENANT_ID.value
):
def microsoft_oauth_register(oauth: OAuth):
client = oauth.register(
name="microsoft",
client_id=MICROSOFT_CLIENT_ID.value,
client_secret=MICROSOFT_CLIENT_SECRET.value,
server_metadata_url=f"{MICROSOFT_CLIENT_LOGIN_BASE_URL.value}/{MICROSOFT_CLIENT_TENANT_ID.value}/v2.0/.well-known/openid-configuration?appid={MICROSOFT_CLIENT_ID.value}",
client_kwargs={
"scope": MICROSOFT_OAUTH_SCOPE.value,
**(
{"timeout": int(OAUTH_TIMEOUT.value)}
if OAUTH_TIMEOUT.value
else {}
),
},
redirect_uri=MICROSOFT_REDIRECT_URI.value,
)
return client
OAUTH_PROVIDERS["microsoft"] = {
"redirect_uri": MICROSOFT_REDIRECT_URI.value,
"picture_url": MICROSOFT_CLIENT_PICTURE_URL.value,
"register": microsoft_oauth_register,
}
if GITHUB_CLIENT_ID.value and GITHUB_CLIENT_SECRET.value:
def github_oauth_register(oauth: OAuth):
client = oauth.register(
name="github",
client_id=GITHUB_CLIENT_ID.value,
client_secret=GITHUB_CLIENT_SECRET.value,
access_token_url="https://github.com/login/oauth/access_token",
authorize_url="https://github.com/login/oauth/authorize",
api_base_url="https://api.github.com",
userinfo_endpoint="https://api.github.com/user",
client_kwargs={
"scope": GITHUB_CLIENT_SCOPE.value,
**(
{"timeout": int(OAUTH_TIMEOUT.value)}
if OAUTH_TIMEOUT.value
else {}
),
},
redirect_uri=GITHUB_CLIENT_REDIRECT_URI.value,
)
return client
OAUTH_PROVIDERS["github"] = {
"redirect_uri": GITHUB_CLIENT_REDIRECT_URI.value,
"register": github_oauth_register,
"sub_claim": "id",
}
if (
OAUTH_CLIENT_ID.value
and (OAUTH_CLIENT_SECRET.value or OAUTH_CODE_CHALLENGE_METHOD.value)
and OPENID_PROVIDER_URL.value
):
def oidc_oauth_register(oauth: OAuth):
client_kwargs = {
"scope": OAUTH_SCOPES.value,
**(
{
"token_endpoint_auth_method": OAUTH_TOKEN_ENDPOINT_AUTH_METHOD.value
}
if OAUTH_TOKEN_ENDPOINT_AUTH_METHOD.value
else {}
),
**(
{"timeout": int(OAUTH_TIMEOUT.value)} if OAUTH_TIMEOUT.value else {}
),
}
if (
OAUTH_CODE_CHALLENGE_METHOD.value
and OAUTH_CODE_CHALLENGE_METHOD.value == "S256"
):
client_kwargs["code_challenge_method"] = "S256"
elif OAUTH_CODE_CHALLENGE_METHOD.value:
raise Exception(
'Code challenge methods other than "%s" not supported. Given: "%s"'
% ("S256", OAUTH_CODE_CHALLENGE_METHOD.value)
)
client = oauth.register(
name="oidc",
client_id=OAUTH_CLIENT_ID.value,
client_secret=OAUTH_CLIENT_SECRET.value,
server_metadata_url=OPENID_PROVIDER_URL.value,
client_kwargs=client_kwargs,
redirect_uri=OPENID_REDIRECT_URI.value,
)
return client
OAUTH_PROVIDERS["oidc"] = {
"name": OAUTH_PROVIDER_NAME.value,
"redirect_uri": OPENID_REDIRECT_URI.value,
"register": oidc_oauth_register,
}
if FEISHU_CLIENT_ID.value and FEISHU_CLIENT_SECRET.value:
def feishu_oauth_register(oauth: OAuth):
client = oauth.register(
name="feishu",
client_id=FEISHU_CLIENT_ID.value,
client_secret=FEISHU_CLIENT_SECRET.value,
access_token_url="https://open.feishu.cn/open-apis/authen/v2/oauth/token",
authorize_url="https://accounts.feishu.cn/open-apis/authen/v1/authorize",
api_base_url="https://open.feishu.cn/open-apis",
userinfo_endpoint="https://open.feishu.cn/open-apis/authen/v1/user_info",
client_kwargs={
"scope": FEISHU_OAUTH_SCOPE.value,
**(
{"timeout": int(OAUTH_TIMEOUT.value)}
if OAUTH_TIMEOUT.value
else {}
),
},
redirect_uri=FEISHU_REDIRECT_URI.value,
)
return client
OAUTH_PROVIDERS["feishu"] = {
"register": feishu_oauth_register,
"sub_claim": "user_id",
}
configured_providers = []
if GOOGLE_CLIENT_ID.value:
configured_providers.append("Google")
if MICROSOFT_CLIENT_ID.value:
configured_providers.append("Microsoft")
if GITHUB_CLIENT_ID.value:
configured_providers.append("GitHub")
if FEISHU_CLIENT_ID.value:
configured_providers.append("Feishu")
if configured_providers and not OPENID_PROVIDER_URL.value:
provider_list = ", ".join(configured_providers)
log.warning(
f"⚠️ OAuth providers configured ({provider_list}) but OPENID_PROVIDER_URL not set - logout will not work!"
)
log.warning(
f"Set OPENID_PROVIDER_URL to your OAuth provider's OpenID Connect discovery endpoint to fix logout functionality."
)
load_oauth_providers()
####################################
# Static DIR
####################################
STATIC_DIR = Path(os.getenv("STATIC_DIR", OPEN_WEBUI_DIR / "static")).resolve()
try:
if STATIC_DIR.exists():
for item in STATIC_DIR.iterdir():
if item.is_file() or item.is_symlink():
try:
item.unlink()
except Exception as e:
pass
except Exception as e:
pass
for file_path in (FRONTEND_BUILD_DIR / "static").glob("**/*"):
if file_path.is_file():
target_path = STATIC_DIR / file_path.relative_to(
(FRONTEND_BUILD_DIR / "static")
)
target_path.parent.mkdir(parents=True, exist_ok=True)
try:
shutil.copyfile(file_path, target_path)
except Exception as e:
logging.error(f"An error occurred: {e}")
frontend_favicon = FRONTEND_BUILD_DIR / "static" / "favicon.png"
if frontend_favicon.exists():
try:
shutil.copyfile(frontend_favicon, STATIC_DIR / "favicon.png")
except Exception as e:
logging.error(f"An error occurred: {e}")
frontend_splash = FRONTEND_BUILD_DIR / "static" / "splash.png"
if frontend_splash.exists():
try:
shutil.copyfile(frontend_splash, STATIC_DIR / "splash.png")
except Exception as e:
logging.error(f"An error occurred: {e}")
frontend_loader = FRONTEND_BUILD_DIR / "static" / "loader.js"
if frontend_loader.exists():
try:
shutil.copyfile(frontend_loader, STATIC_DIR / "loader.js")
except Exception as e:
logging.error(f"An error occurred: {e}")
####################################
# CUSTOM_NAME (Legacy)
####################################
CUSTOM_NAME = os.environ.get("CUSTOM_NAME", "")
if CUSTOM_NAME:
try:
r = requests.get(f"https://api.openwebui.com/api/v1/custom/{CUSTOM_NAME}")
data = r.json()
if r.ok:
if "logo" in data:
WEBUI_FAVICON_URL = url = (
f"https://api.openwebui.com{data['logo']}"
if data["logo"][0] == "/"
else data["logo"]
)
r = requests.get(url, stream=True)
if r.status_code == 200:
with open(f"{STATIC_DIR}/favicon.png", "wb") as f:
r.raw.decode_content = True
shutil.copyfileobj(r.raw, f)
if "splash" in data:
url = (
f"https://api.openwebui.com{data['splash']}"
if data["splash"][0] == "/"
else data["splash"]
)
r = requests.get(url, stream=True)
if r.status_code == 200:
with open(f"{STATIC_DIR}/splash.png", "wb") as f:
r.raw.decode_content = True
shutil.copyfileobj(r.raw, f)
WEBUI_NAME = data["name"]
except Exception as e:
log.exception(e)
pass
####################################
# STORAGE PROVIDER
####################################
STORAGE_PROVIDER = os.environ.get("STORAGE_PROVIDER", "local") # defaults to local, s3
S3_ACCESS_KEY_ID = os.environ.get("S3_ACCESS_KEY_ID", None)
S3_SECRET_ACCESS_KEY = os.environ.get("S3_SECRET_ACCESS_KEY", None)
S3_REGION_NAME = os.environ.get("S3_REGION_NAME", None)
S3_BUCKET_NAME = os.environ.get("S3_BUCKET_NAME", None)
S3_KEY_PREFIX = os.environ.get("S3_KEY_PREFIX", None)
S3_ENDPOINT_URL = os.environ.get("S3_ENDPOINT_URL", None)
S3_USE_ACCELERATE_ENDPOINT = (
os.environ.get("S3_USE_ACCELERATE_ENDPOINT", "false").lower() == "true"
)
S3_ADDRESSING_STYLE = os.environ.get("S3_ADDRESSING_STYLE", None)
S3_ENABLE_TAGGING = os.getenv("S3_ENABLE_TAGGING", "false").lower() == "true"
GCS_BUCKET_NAME = os.environ.get("GCS_BUCKET_NAME", None)
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.environ.get(
"GOOGLE_APPLICATION_CREDENTIALS_JSON", None
)
AZURE_STORAGE_ENDPOINT = os.environ.get("AZURE_STORAGE_ENDPOINT", None)
AZURE_STORAGE_CONTAINER_NAME = os.environ.get("AZURE_STORAGE_CONTAINER_NAME", None)
AZURE_STORAGE_KEY = os.environ.get("AZURE_STORAGE_KEY", None)
####################################
# File Upload DIR
####################################
UPLOAD_DIR = DATA_DIR / "uploads"
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
####################################
# Cache DIR
####################################
CACHE_DIR = DATA_DIR / "cache"
CACHE_DIR.mkdir(parents=True, exist_ok=True)
####################################
# DIRECT CONNECTIONS
####################################
ENABLE_DIRECT_CONNECTIONS = PersistentConfig(
"ENABLE_DIRECT_CONNECTIONS",
"direct.enable",
os.environ.get("ENABLE_DIRECT_CONNECTIONS", "False").lower() == "true",
)
####################################
# OLLAMA_BASE_URL
####################################
ENABLE_OLLAMA_API = PersistentConfig(
"ENABLE_OLLAMA_API",
"ollama.enable",
os.environ.get("ENABLE_OLLAMA_API", "True").lower() == "true",
)
OLLAMA_API_BASE_URL = os.environ.get(
"OLLAMA_API_BASE_URL", "http://localhost:11434/api"
)
OLLAMA_BASE_URL = os.environ.get("OLLAMA_BASE_URL", "")
if OLLAMA_BASE_URL:
# Remove trailing slash
OLLAMA_BASE_URL = (
OLLAMA_BASE_URL[:-1] if OLLAMA_BASE_URL.endswith("/") else OLLAMA_BASE_URL
)
K8S_FLAG = os.environ.get("K8S_FLAG", "")
USE_OLLAMA_DOCKER = os.environ.get("USE_OLLAMA_DOCKER", "false")
if OLLAMA_BASE_URL == "" and OLLAMA_API_BASE_URL != "":
OLLAMA_BASE_URL = (
OLLAMA_API_BASE_URL[:-4]
if OLLAMA_API_BASE_URL.endswith("/api")
else OLLAMA_API_BASE_URL
)
if ENV == "prod":
if OLLAMA_BASE_URL == "/ollama" and not K8S_FLAG:
if USE_OLLAMA_DOCKER.lower() == "true":
# if you use all-in-one docker container (Open WebUI + Ollama)
# with the docker build arg USE_OLLAMA=true (--build-arg="USE_OLLAMA=true") this only works with http://localhost:11434
OLLAMA_BASE_URL = "http://localhost:11434"
else:
OLLAMA_BASE_URL = "http://host.docker.internal:11434"
elif K8S_FLAG:
OLLAMA_BASE_URL = "http://ollama-service.open-webui.svc.cluster.local:11434"
OLLAMA_BASE_URLS = os.environ.get("OLLAMA_BASE_URLS", "")
OLLAMA_BASE_URLS = OLLAMA_BASE_URLS if OLLAMA_BASE_URLS != "" else OLLAMA_BASE_URL
OLLAMA_BASE_URLS = [url.strip() for url in OLLAMA_BASE_URLS.split(";")]
OLLAMA_BASE_URLS = PersistentConfig(
"OLLAMA_BASE_URLS", "ollama.base_urls", OLLAMA_BASE_URLS
)
OLLAMA_API_CONFIGS = PersistentConfig(
"OLLAMA_API_CONFIGS",
"ollama.api_configs",
{},
)
####################################
# OPENAI_API
####################################
ENABLE_OPENAI_API = PersistentConfig(
"ENABLE_OPENAI_API",
"openai.enable",
os.environ.get("ENABLE_OPENAI_API", "True").lower() == "true",
)
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
OPENAI_API_BASE_URL = os.environ.get("OPENAI_API_BASE_URL", "")
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY", "")
GEMINI_API_BASE_URL = os.environ.get("GEMINI_API_BASE_URL", "")
if OPENAI_API_BASE_URL == "":
OPENAI_API_BASE_URL = "https://api.openai.com/v1"
else:
if OPENAI_API_BASE_URL.endswith("/"):
OPENAI_API_BASE_URL = OPENAI_API_BASE_URL[:-1]
OPENAI_API_KEYS = os.environ.get("OPENAI_API_KEYS", "")
OPENAI_API_KEYS = OPENAI_API_KEYS if OPENAI_API_KEYS != "" else OPENAI_API_KEY
OPENAI_API_KEYS = [url.strip() for url in OPENAI_API_KEYS.split(";")]
OPENAI_API_KEYS = PersistentConfig(
"OPENAI_API_KEYS", "openai.api_keys", OPENAI_API_KEYS
)
OPENAI_API_BASE_URLS = os.environ.get("OPENAI_API_BASE_URLS", "")
OPENAI_API_BASE_URLS = (
OPENAI_API_BASE_URLS if OPENAI_API_BASE_URLS != "" else OPENAI_API_BASE_URL
)
OPENAI_API_BASE_URLS = [
url.strip() if url != "" else "https://api.openai.com/v1"
for url in OPENAI_API_BASE_URLS.split(";")
]
OPENAI_API_BASE_URLS = PersistentConfig(
"OPENAI_API_BASE_URLS", "openai.api_base_urls", OPENAI_API_BASE_URLS
)
OPENAI_API_CONFIGS = PersistentConfig(
"OPENAI_API_CONFIGS",
"openai.api_configs",
{},
)
# Get the actual OpenAI API key based on the base URL
OPENAI_API_KEY = ""
try:
OPENAI_API_KEY = OPENAI_API_KEYS.value[
OPENAI_API_BASE_URLS.value.index("https://api.openai.com/v1")
]
except Exception:
pass
OPENAI_API_BASE_URL = "https://api.openai.com/v1"
####################################
# MODELS
####################################
ENABLE_BASE_MODELS_CACHE = PersistentConfig(
"ENABLE_BASE_MODELS_CACHE",
"models.base_models_cache",
os.environ.get("ENABLE_BASE_MODELS_CACHE", "False").lower() == "true",
)
####################################
# TOOL_SERVERS
####################################
try:
tool_server_connections = json.loads(
os.environ.get("TOOL_SERVER_CONNECTIONS", "[]")
)
except Exception as e:
log.exception(f"Error loading TOOL_SERVER_CONNECTIONS: {e}")
tool_server_connections = []
TOOL_SERVER_CONNECTIONS = PersistentConfig(
"TOOL_SERVER_CONNECTIONS",
"tool_server.connections",
tool_server_connections,
)
####################################
# WEBUI
####################################
WEBUI_URL = PersistentConfig("WEBUI_URL", "webui.url", os.environ.get("WEBUI_URL", ""))
ENABLE_SIGNUP = PersistentConfig(
"ENABLE_SIGNUP",
"ui.enable_signup",
(
False
if not WEBUI_AUTH
else os.environ.get("ENABLE_SIGNUP", "True").lower() == "true"
),
)
ENABLE_LOGIN_FORM = PersistentConfig(
"ENABLE_LOGIN_FORM",
"ui.ENABLE_LOGIN_FORM",
os.environ.get("ENABLE_LOGIN_FORM", "True").lower() == "true",
)
DEFAULT_LOCALE = PersistentConfig(
"DEFAULT_LOCALE",
"ui.default_locale",
os.environ.get("DEFAULT_LOCALE", ""),
)
DEFAULT_MODELS = PersistentConfig(
"DEFAULT_MODELS", "ui.default_models", os.environ.get("DEFAULT_MODELS", None)
)
try:
default_prompt_suggestions = json.loads(
os.environ.get("DEFAULT_PROMPT_SUGGESTIONS", "[]")
)
except Exception as e:
log.exception(f"Error loading DEFAULT_PROMPT_SUGGESTIONS: {e}")
default_prompt_suggestions = []
if default_prompt_suggestions == []:
default_prompt_suggestions = [
{
"title": ["Help me study", "vocabulary for a college entrance exam"],
"content": "Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option.",
},
{
"title": ["Give me ideas", "for what to do with my kids' art"],
"content": "What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter.",
},
{
"title": ["Tell me a fun fact", "about the Roman Empire"],
"content": "Tell me a random fun fact about the Roman Empire",
},
{
"title": ["Show me a code snippet", "of a website's sticky header"],
"content": "Show me a code snippet of a website's sticky header in CSS and JavaScript.",
},
{
"title": [
"Explain options trading",
"if I'm familiar with buying and selling stocks",
],
"content": "Explain options trading in simple terms if I'm familiar with buying and selling stocks.",
},
{
"title": ["Overcome procrastination", "give me tips"],
"content": "Could you start by asking me about instances when I procrastinate the most and then give me some suggestions to overcome it?",
},
]
DEFAULT_PROMPT_SUGGESTIONS = PersistentConfig(
"DEFAULT_PROMPT_SUGGESTIONS",
"ui.prompt_suggestions",
default_prompt_suggestions,
)
MODEL_ORDER_LIST = PersistentConfig(
"MODEL_ORDER_LIST",
"ui.model_order_list",
[],
)
DEFAULT_USER_ROLE = PersistentConfig(
"DEFAULT_USER_ROLE",
"ui.default_user_role",
os.getenv("DEFAULT_USER_ROLE", "pending"),
)
PENDING_USER_OVERLAY_TITLE = PersistentConfig(
"PENDING_USER_OVERLAY_TITLE",
"ui.pending_user_overlay_title",
os.environ.get("PENDING_USER_OVERLAY_TITLE", ""),
)
PENDING_USER_OVERLAY_CONTENT = PersistentConfig(
"PENDING_USER_OVERLAY_CONTENT",
"ui.pending_user_overlay_content",
os.environ.get("PENDING_USER_OVERLAY_CONTENT", ""),
)
RESPONSE_WATERMARK = PersistentConfig(
"RESPONSE_WATERMARK",
"ui.watermark",
os.environ.get("RESPONSE_WATERMARK", ""),
)
USER_PERMISSIONS_WORKSPACE_MODELS_ACCESS = (
os.environ.get("USER_PERMISSIONS_WORKSPACE_MODELS_ACCESS", "False").lower()
== "true"
)
USER_PERMISSIONS_WORKSPACE_KNOWLEDGE_ACCESS = (
os.environ.get("USER_PERMISSIONS_WORKSPACE_KNOWLEDGE_ACCESS", "False").lower()
== "true"
)
USER_PERMISSIONS_WORKSPACE_PROMPTS_ACCESS = (
os.environ.get("USER_PERMISSIONS_WORKSPACE_PROMPTS_ACCESS", "False").lower()
== "true"
)
USER_PERMISSIONS_WORKSPACE_TOOLS_ACCESS = (
os.environ.get("USER_PERMISSIONS_WORKSPACE_TOOLS_ACCESS", "False").lower() == "true"
)
USER_PERMISSIONS_WORKSPACE_MODELS_ALLOW_PUBLIC_SHARING = (
os.environ.get(
"USER_PERMISSIONS_WORKSPACE_MODELS_ALLOW_PUBLIC_SHARING", "False"
).lower()
== "true"
)
USER_PERMISSIONS_NOTES_ALLOW_PUBLIC_SHARING = (
os.environ.get("USER_PERMISSIONS_NOTES_ALLOW_PUBLIC_SHARING", "False").lower()
== "true"
)
USER_PERMISSIONS_WORKSPACE_KNOWLEDGE_ALLOW_PUBLIC_SHARING = (
os.environ.get(
"USER_PERMISSIONS_WORKSPACE_KNOWLEDGE_ALLOW_PUBLIC_SHARING", "False"
).lower()
== "true"
)
USER_PERMISSIONS_WORKSPACE_PROMPTS_ALLOW_PUBLIC_SHARING = (
os.environ.get(
"USER_PERMISSIONS_WORKSPACE_PROMPTS_ALLOW_PUBLIC_SHARING", "False"
).lower()
== "true"
)
USER_PERMISSIONS_WORKSPACE_TOOLS_ALLOW_PUBLIC_SHARING = (
os.environ.get(
"USER_PERMISSIONS_WORKSPACE_TOOLS_ALLOW_PUBLIC_SHARING", "False"
).lower()
== "true"
)
USER_PERMISSIONS_CHAT_CONTROLS = (
os.environ.get("USER_PERMISSIONS_CHAT_CONTROLS", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_VALVES = (
os.environ.get("USER_PERMISSIONS_CHAT_VALVES", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_SYSTEM_PROMPT = (
os.environ.get("USER_PERMISSIONS_CHAT_SYSTEM_PROMPT", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_PARAMS = (
os.environ.get("USER_PERMISSIONS_CHAT_PARAMS", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_FILE_UPLOAD = (
os.environ.get("USER_PERMISSIONS_CHAT_FILE_UPLOAD", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_DELETE = (
os.environ.get("USER_PERMISSIONS_CHAT_DELETE", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_DELETE_MESSAGE = (
os.environ.get("USER_PERMISSIONS_CHAT_DELETE_MESSAGE", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_CONTINUE_RESPONSE = (
os.environ.get("USER_PERMISSIONS_CHAT_CONTINUE_RESPONSE", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_REGENERATE_RESPONSE = (
os.environ.get("USER_PERMISSIONS_CHAT_REGENERATE_RESPONSE", "True").lower()
== "true"
)
USER_PERMISSIONS_CHAT_RATE_RESPONSE = (
os.environ.get("USER_PERMISSIONS_CHAT_RATE_RESPONSE", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_EDIT = (
os.environ.get("USER_PERMISSIONS_CHAT_EDIT", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_SHARE = (
os.environ.get("USER_PERMISSIONS_CHAT_SHARE", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_EXPORT = (
os.environ.get("USER_PERMISSIONS_CHAT_EXPORT", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_STT = (
os.environ.get("USER_PERMISSIONS_CHAT_STT", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_TTS = (
os.environ.get("USER_PERMISSIONS_CHAT_TTS", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_CALL = (
os.environ.get("USER_PERMISSIONS_CHAT_CALL", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_MULTIPLE_MODELS = (
os.environ.get("USER_PERMISSIONS_CHAT_MULTIPLE_MODELS", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_TEMPORARY = (
os.environ.get("USER_PERMISSIONS_CHAT_TEMPORARY", "True").lower() == "true"
)
USER_PERMISSIONS_CHAT_TEMPORARY_ENFORCED = (
os.environ.get("USER_PERMISSIONS_CHAT_TEMPORARY_ENFORCED", "False").lower()
== "true"
)
USER_PERMISSIONS_FEATURES_DIRECT_TOOL_SERVERS = (
os.environ.get("USER_PERMISSIONS_FEATURES_DIRECT_TOOL_SERVERS", "False").lower()
== "true"
)
USER_PERMISSIONS_FEATURES_WEB_SEARCH = (
os.environ.get("USER_PERMISSIONS_FEATURES_WEB_SEARCH", "True").lower() == "true"
)
USER_PERMISSIONS_FEATURES_IMAGE_GENERATION = (
os.environ.get("USER_PERMISSIONS_FEATURES_IMAGE_GENERATION", "True").lower()
== "true"
)
USER_PERMISSIONS_FEATURES_CODE_INTERPRETER = (
os.environ.get("USER_PERMISSIONS_FEATURES_CODE_INTERPRETER", "True").lower()
== "true"
)
USER_PERMISSIONS_FEATURES_NOTES = (
os.environ.get("USER_PERMISSIONS_FEATURES_NOTES", "True").lower() == "true"
)
DEFAULT_USER_PERMISSIONS = {
"workspace": {
"models": USER_PERMISSIONS_WORKSPACE_MODELS_ACCESS,
"knowledge": USER_PERMISSIONS_WORKSPACE_KNOWLEDGE_ACCESS,
"prompts": USER_PERMISSIONS_WORKSPACE_PROMPTS_ACCESS,
"tools": USER_PERMISSIONS_WORKSPACE_TOOLS_ACCESS,
},
"sharing": {
"public_models": USER_PERMISSIONS_WORKSPACE_MODELS_ALLOW_PUBLIC_SHARING,
"public_knowledge": USER_PERMISSIONS_WORKSPACE_KNOWLEDGE_ALLOW_PUBLIC_SHARING,
"public_prompts": USER_PERMISSIONS_WORKSPACE_PROMPTS_ALLOW_PUBLIC_SHARING,
"public_tools": USER_PERMISSIONS_WORKSPACE_TOOLS_ALLOW_PUBLIC_SHARING,
"public_notes": USER_PERMISSIONS_NOTES_ALLOW_PUBLIC_SHARING,
},
"chat": {
"controls": USER_PERMISSIONS_CHAT_CONTROLS,
"valves": USER_PERMISSIONS_CHAT_VALVES,
"system_prompt": USER_PERMISSIONS_CHAT_SYSTEM_PROMPT,
"params": USER_PERMISSIONS_CHAT_PARAMS,
"file_upload": USER_PERMISSIONS_CHAT_FILE_UPLOAD,
"delete": USER_PERMISSIONS_CHAT_DELETE,
"delete_message": USER_PERMISSIONS_CHAT_DELETE_MESSAGE,
"continue_response": USER_PERMISSIONS_CHAT_CONTINUE_RESPONSE,
"regenerate_response": USER_PERMISSIONS_CHAT_REGENERATE_RESPONSE,
"rate_response": USER_PERMISSIONS_CHAT_RATE_RESPONSE,
"edit": USER_PERMISSIONS_CHAT_EDIT,
"share": USER_PERMISSIONS_CHAT_SHARE,
"export": USER_PERMISSIONS_CHAT_EXPORT,
"stt": USER_PERMISSIONS_CHAT_STT,
"tts": USER_PERMISSIONS_CHAT_TTS,
"call": USER_PERMISSIONS_CHAT_CALL,
"multiple_models": USER_PERMISSIONS_CHAT_MULTIPLE_MODELS,
"temporary": USER_PERMISSIONS_CHAT_TEMPORARY,
"temporary_enforced": USER_PERMISSIONS_CHAT_TEMPORARY_ENFORCED,
},
"features": {
"direct_tool_servers": USER_PERMISSIONS_FEATURES_DIRECT_TOOL_SERVERS,
"web_search": USER_PERMISSIONS_FEATURES_WEB_SEARCH,
"image_generation": USER_PERMISSIONS_FEATURES_IMAGE_GENERATION,
"code_interpreter": USER_PERMISSIONS_FEATURES_CODE_INTERPRETER,
"notes": USER_PERMISSIONS_FEATURES_NOTES,
},
}
USER_PERMISSIONS = PersistentConfig(
"USER_PERMISSIONS",
"user.permissions",
DEFAULT_USER_PERMISSIONS,
)
ENABLE_CHANNELS = PersistentConfig(
"ENABLE_CHANNELS",
"channels.enable",
os.environ.get("ENABLE_CHANNELS", "False").lower() == "true",
)
ENABLE_NOTES = PersistentConfig(
"ENABLE_NOTES",
"notes.enable",
os.environ.get("ENABLE_NOTES", "True").lower() == "true",
)
ENABLE_EVALUATION_ARENA_MODELS = PersistentConfig(
"ENABLE_EVALUATION_ARENA_MODELS",
"evaluation.arena.enable",
os.environ.get("ENABLE_EVALUATION_ARENA_MODELS", "True").lower() == "true",
)
EVALUATION_ARENA_MODELS = PersistentConfig(
"EVALUATION_ARENA_MODELS",
"evaluation.arena.models",
[],
)
DEFAULT_ARENA_MODEL = {
"id": "arena-model",
"name": "Arena Model",
"meta": {
"profile_image_url": "/favicon.png",
"description": "Submit your questions to anonymous AI chatbots and vote on the best response.",
"model_ids": None,
},
}
WEBHOOK_URL = PersistentConfig(
"WEBHOOK_URL", "webhook_url", os.environ.get("WEBHOOK_URL", "")
)
ENABLE_ADMIN_EXPORT = os.environ.get("ENABLE_ADMIN_EXPORT", "True").lower() == "true"
ENABLE_ADMIN_WORKSPACE_CONTENT_ACCESS = (
os.environ.get("ENABLE_ADMIN_WORKSPACE_CONTENT_ACCESS", "True").lower() == "true"
)
BYPASS_ADMIN_ACCESS_CONTROL = (
os.environ.get(
"BYPASS_ADMIN_ACCESS_CONTROL",
os.environ.get("ENABLE_ADMIN_WORKSPACE_CONTENT_ACCESS", "True"),
).lower()
== "true"
)
ENABLE_ADMIN_CHAT_ACCESS = (
os.environ.get("ENABLE_ADMIN_CHAT_ACCESS", "True").lower() == "true"
)
ENABLE_COMMUNITY_SHARING = PersistentConfig(
"ENABLE_COMMUNITY_SHARING",
"ui.enable_community_sharing",
os.environ.get("ENABLE_COMMUNITY_SHARING", "True").lower() == "true",
)
ENABLE_MESSAGE_RATING = PersistentConfig(
"ENABLE_MESSAGE_RATING",
"ui.enable_message_rating",
os.environ.get("ENABLE_MESSAGE_RATING", "True").lower() == "true",
)
ENABLE_USER_WEBHOOKS = PersistentConfig(
"ENABLE_USER_WEBHOOKS",
"ui.enable_user_webhooks",
os.environ.get("ENABLE_USER_WEBHOOKS", "True").lower() == "true",
)
# FastAPI / AnyIO settings
THREAD_POOL_SIZE = os.getenv("THREAD_POOL_SIZE", None)
if THREAD_POOL_SIZE is not None and isinstance(THREAD_POOL_SIZE, str):
try:
THREAD_POOL_SIZE = int(THREAD_POOL_SIZE)
except ValueError:
log.warning(
f"THREAD_POOL_SIZE is not a valid integer: {THREAD_POOL_SIZE}. Defaulting to None."
)
THREAD_POOL_SIZE = None
def validate_cors_origin(origin):
parsed_url = urlparse(origin)
# Check if the scheme is either http or https, or a custom scheme
schemes = ["http", "https"] + CORS_ALLOW_CUSTOM_SCHEME
if parsed_url.scheme not in schemes:
raise ValueError(
f"Invalid scheme in CORS_ALLOW_ORIGIN: '{origin}'. Only 'http' and 'https' and CORS_ALLOW_CUSTOM_SCHEME are allowed."
)
# Ensure that the netloc (domain + port) is present, indicating it's a valid URL
if not parsed_url.netloc:
raise ValueError(f"Invalid URL structure in CORS_ALLOW_ORIGIN: '{origin}'.")
# For production, you should only need one host as
# fastapi serves the svelte-kit built frontend and backend from the same host and port.
# To test CORS_ALLOW_ORIGIN locally, you can set something like
# CORS_ALLOW_ORIGIN=http://localhost:5173;http://localhost:8080
# in your .env file depending on your frontend port, 5173 in this case.
CORS_ALLOW_ORIGIN = os.environ.get("CORS_ALLOW_ORIGIN", "*").split(";")
# Allows custom URL schemes (e.g., app://) to be used as origins for CORS.
# Useful for local development or desktop clients with schemes like app:// or other custom protocols.
# Provide a semicolon-separated list of allowed schemes in the environment variable CORS_ALLOW_CUSTOM_SCHEMES.
CORS_ALLOW_CUSTOM_SCHEME = os.environ.get("CORS_ALLOW_CUSTOM_SCHEME", "").split(";")
if CORS_ALLOW_ORIGIN == ["*"]:
log.warning(
"\n\nWARNING: CORS_ALLOW_ORIGIN IS SET TO '*' - NOT RECOMMENDED FOR PRODUCTION DEPLOYMENTS.\n"
)
else:
# You have to pick between a single wildcard or a list of origins.
# Doing both will result in CORS errors in the browser.
for origin in CORS_ALLOW_ORIGIN:
validate_cors_origin(origin)
class BannerModel(BaseModel):
id: str
type: str
title: Optional[str] = None
content: str
dismissible: bool
timestamp: int
try:
banners = json.loads(os.environ.get("WEBUI_BANNERS", "[]"))
banners = [BannerModel(**banner) for banner in banners]
except Exception as e:
log.exception(f"Error loading WEBUI_BANNERS: {e}")
banners = []
WEBUI_BANNERS = PersistentConfig("WEBUI_BANNERS", "ui.banners", banners)
SHOW_ADMIN_DETAILS = PersistentConfig(
"SHOW_ADMIN_DETAILS",
"auth.admin.show",
os.environ.get("SHOW_ADMIN_DETAILS", "true").lower() == "true",
)
ADMIN_EMAIL = PersistentConfig(
"ADMIN_EMAIL",
"auth.admin.email",
os.environ.get("ADMIN_EMAIL", None),
)
####################################
# TASKS
####################################
TASK_MODEL = PersistentConfig(
"TASK_MODEL",
"task.model.default",
os.environ.get("TASK_MODEL", ""),
)
TASK_MODEL_EXTERNAL = PersistentConfig(
"TASK_MODEL_EXTERNAL",
"task.model.external",
os.environ.get("TASK_MODEL_EXTERNAL", ""),
)
TITLE_GENERATION_PROMPT_TEMPLATE = PersistentConfig(
"TITLE_GENERATION_PROMPT_TEMPLATE",
"task.title.prompt_template",
os.environ.get("TITLE_GENERATION_PROMPT_TEMPLATE", ""),
)
DEFAULT_TITLE_GENERATION_PROMPT_TEMPLATE = """### Task:
Generate a concise, 3-5 word title with an emoji summarizing the chat history.
### Guidelines:
- The title should clearly represent the main theme or subject of the conversation.
- Use emojis that enhance understanding of the topic, but avoid quotation marks or special formatting.
- Write the title in the chat's primary language; default to English if multilingual.
- Prioritize accuracy over excessive creativity; keep it clear and simple.
- Your entire response must consist solely of the JSON object, without any introductory or concluding text.
- The output must be a single, raw JSON object, without any markdown code fences or other encapsulating text.
- Ensure no conversational text, affirmations, or explanations precede or follow the raw JSON output, as this will cause direct parsing failure.
### Output:
JSON format: { "title": "your concise title here" }
### Examples:
- { "title": "📉 Stock Market Trends" },
- { "title": "🍪 Perfect Chocolate Chip Recipe" },
- { "title": "Evolution of Music Streaming" },
- { "title": "Remote Work Productivity Tips" },
- { "title": "Artificial Intelligence in Healthcare" },
- { "title": "🎮 Video Game Development Insights" }
### Chat History:
<chat_history>
{{MESSAGES:END:2}}
</chat_history>"""
TAGS_GENERATION_PROMPT_TEMPLATE = PersistentConfig(
"TAGS_GENERATION_PROMPT_TEMPLATE",
"task.tags.prompt_template",
os.environ.get("TAGS_GENERATION_PROMPT_TEMPLATE", ""),
)
DEFAULT_TAGS_GENERATION_PROMPT_TEMPLATE = """### Task:
Generate 1-3 broad tags categorizing the main themes of the chat history, along with 1-3 more specific subtopic tags.
### Guidelines:
- Start with high-level domains (e.g. Science, Technology, Philosophy, Arts, Politics, Business, Health, Sports, Entertainment, Education)
- Consider including relevant subfields/subdomains if they are strongly represented throughout the conversation
- If content is too short (less than 3 messages) or too diverse, use only ["General"]
- Use the chat's primary language; default to English if multilingual
- Prioritize accuracy over specificity
### Output:
JSON format: { "tags": ["tag1", "tag2", "tag3"] }
### Chat History:
<chat_history>
{{MESSAGES:END:6}}
</chat_history>"""
IMAGE_PROMPT_GENERATION_PROMPT_TEMPLATE = PersistentConfig(
"IMAGE_PROMPT_GENERATION_PROMPT_TEMPLATE",
"task.image.prompt_template",
os.environ.get("IMAGE_PROMPT_GENERATION_PROMPT_TEMPLATE", ""),
)
DEFAULT_IMAGE_PROMPT_GENERATION_PROMPT_TEMPLATE = """### Task:
Generate a detailed prompt for am image generation task based on the given language and context. Describe the image as if you were explaining it to someone who cannot see it. Include relevant details, colors, shapes, and any other important elements.
### Guidelines:
- Be descriptive and detailed, focusing on the most important aspects of the image.
- Avoid making assumptions or adding information not present in the image.
- Use the chat's primary language; default to English if multilingual.
- If the image is too complex, focus on the most prominent elements.
### Output:
Strictly return in JSON format:
{
"prompt": "Your detailed description here."
}
### Chat History:
<chat_history>
{{MESSAGES:END:6}}
</chat_history>"""
FOLLOW_UP_GENERATION_PROMPT_TEMPLATE = PersistentConfig(
"FOLLOW_UP_GENERATION_PROMPT_TEMPLATE",
"task.follow_up.prompt_template",
os.environ.get("FOLLOW_UP_GENERATION_PROMPT_TEMPLATE", ""),
)
DEFAULT_FOLLOW_UP_GENERATION_PROMPT_TEMPLATE = """### Task:
Suggest 3-5 relevant follow-up questions or prompts that the user might naturally ask next in this conversation as a **user**, based on the chat history, to help continue or deepen the discussion.
### Guidelines:
- Write all follow-up questions from the users point of view, directed to the assistant.
- Make questions concise, clear, and directly related to the discussed topic(s).
- Only suggest follow-ups that make sense given the chat content and do not repeat what was already covered.
- If the conversation is very short or not specific, suggest more general (but relevant) follow-ups the user might ask.
- Use the conversation's primary language; default to English if multilingual.
- Response must be a JSON array of strings, no extra text or formatting.
### Output:
JSON format: { "follow_ups": ["Question 1?", "Question 2?", "Question 3?"] }
### Chat History:
<chat_history>
{{MESSAGES:END:6}}
</chat_history>"""
ENABLE_FOLLOW_UP_GENERATION = PersistentConfig(
"ENABLE_FOLLOW_UP_GENERATION",
"task.follow_up.enable",
os.environ.get("ENABLE_FOLLOW_UP_GENERATION", "True").lower() == "true",
)
ENABLE_TAGS_GENERATION = PersistentConfig(
"ENABLE_TAGS_GENERATION",
"task.tags.enable",
os.environ.get("ENABLE_TAGS_GENERATION", "True").lower() == "true",
)
ENABLE_TITLE_GENERATION = PersistentConfig(
"ENABLE_TITLE_GENERATION",
"task.title.enable",
os.environ.get("ENABLE_TITLE_GENERATION", "True").lower() == "true",
)
ENABLE_SEARCH_QUERY_GENERATION = PersistentConfig(
"ENABLE_SEARCH_QUERY_GENERATION",
"task.query.search.enable",
os.environ.get("ENABLE_SEARCH_QUERY_GENERATION", "True").lower() == "true",
)
ENABLE_RETRIEVAL_QUERY_GENERATION = PersistentConfig(
"ENABLE_RETRIEVAL_QUERY_GENERATION",
"task.query.retrieval.enable",
os.environ.get("ENABLE_RETRIEVAL_QUERY_GENERATION", "True").lower() == "true",
)
QUERY_GENERATION_PROMPT_TEMPLATE = PersistentConfig(
"QUERY_GENERATION_PROMPT_TEMPLATE",
"task.query.prompt_template",
os.environ.get("QUERY_GENERATION_PROMPT_TEMPLATE", ""),
)
DEFAULT_QUERY_GENERATION_PROMPT_TEMPLATE = """### Task:
Analyze the chat history to determine the necessity of generating search queries, in the given language. By default, **prioritize generating 1-3 broad and relevant search queries** unless it is absolutely certain that no additional information is required. The aim is to retrieve comprehensive, updated, and valuable information even with minimal uncertainty. If no search is unequivocally needed, return an empty list.
### Guidelines:
- Respond **EXCLUSIVELY** with a JSON object. Any form of extra commentary, explanation, or additional text is strictly prohibited.
- When generating search queries, respond in the format: { "queries": ["query1", "query2"] }, ensuring each query is distinct, concise, and relevant to the topic.
- If and only if it is entirely certain that no useful results can be retrieved by a search, return: { "queries": [] }.
- Err on the side of suggesting search queries if there is **any chance** they might provide useful or updated information.
- Be concise and focused on composing high-quality search queries, avoiding unnecessary elaboration, commentary, or assumptions.
- Today's date is: {{CURRENT_DATE}}.
- Always prioritize providing actionable and broad queries that maximize informational coverage.
### Output:
Strictly return in JSON format:
{
"queries": ["query1", "query2"]
}
### Chat History:
<chat_history>
{{MESSAGES:END:6}}
</chat_history>
"""
ENABLE_AUTOCOMPLETE_GENERATION = PersistentConfig(
"ENABLE_AUTOCOMPLETE_GENERATION",
"task.autocomplete.enable",
os.environ.get("ENABLE_AUTOCOMPLETE_GENERATION", "False").lower() == "true",
)
AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH = PersistentConfig(
"AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH",
"task.autocomplete.input_max_length",
int(os.environ.get("AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH", "-1")),
)
AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE = PersistentConfig(
"AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE",
"task.autocomplete.prompt_template",
os.environ.get("AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE", ""),
)
DEFAULT_AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE = """### Task:
You are an autocompletion system. Continue the text in `<text>` based on the **completion type** in `<type>` and the given language.
### **Instructions**:
1. Analyze `<text>` for context and meaning.
2. Use `<type>` to guide your output:
- **General**: Provide a natural, concise continuation.
- **Search Query**: Complete as if generating a realistic search query.
3. Start as if you are directly continuing `<text>`. Do **not** repeat, paraphrase, or respond as a model. Simply complete the text.
4. Ensure the continuation:
- Flows naturally from `<text>`.
- Avoids repetition, overexplaining, or unrelated ideas.
5. If unsure, return: `{ "text": "" }`.
### **Output Rules**:
- Respond only in JSON format: `{ "text": "<your_completion>" }`.
### **Examples**:
#### Example 1:
Input:
<type>General</type>
<text>The sun was setting over the horizon, painting the sky</text>
Output:
{ "text": "with vibrant shades of orange and pink." }
#### Example 2:
Input:
<type>Search Query</type>
<text>Top-rated restaurants in</text>
Output:
{ "text": "New York City for Italian cuisine." }
---
### Context:
<chat_history>
{{MESSAGES:END:6}}
</chat_history>
<type>{{TYPE}}</type>
<text>{{PROMPT}}</text>
#### Output:
"""
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = PersistentConfig(
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE",
"task.tools.prompt_template",
os.environ.get("TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE", ""),
)
DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = """Available Tools: {{TOOLS}}
Your task is to choose and return the correct tool(s) from the list of available tools based on the query. Follow these guidelines:
- Return only the JSON object, without any additional text or explanation.
- If no tools match the query, return an empty array:
{
"tool_calls": []
}
- If one or more tools match the query, construct a JSON response containing a "tool_calls" array with objects that include:
- "name": The tool's name.
- "parameters": A dictionary of required parameters and their corresponding values.
The format for the JSON response is strictly:
{
"tool_calls": [
{"name": "toolName1", "parameters": {"key1": "value1"}},
{"name": "toolName2", "parameters": {"key2": "value2"}}
]
}"""
DEFAULT_EMOJI_GENERATION_PROMPT_TEMPLATE = """Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱).
Message: ```{{prompt}}```"""
DEFAULT_MOA_GENERATION_PROMPT_TEMPLATE = """You have been provided with a set of responses from various models to the latest user query: "{{prompt}}"
Your task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.
Responses from models: {{responses}}"""
####################################
# Code Interpreter
####################################
ENABLE_CODE_EXECUTION = PersistentConfig(
"ENABLE_CODE_EXECUTION",
"code_execution.enable",
os.environ.get("ENABLE_CODE_EXECUTION", "True").lower() == "true",
)
CODE_EXECUTION_ENGINE = PersistentConfig(
"CODE_EXECUTION_ENGINE",
"code_execution.engine",
os.environ.get("CODE_EXECUTION_ENGINE", "pyodide"),
)
CODE_EXECUTION_JUPYTER_URL = PersistentConfig(
"CODE_EXECUTION_JUPYTER_URL",
"code_execution.jupyter.url",
os.environ.get("CODE_EXECUTION_JUPYTER_URL", ""),
)
CODE_EXECUTION_JUPYTER_AUTH = PersistentConfig(
"CODE_EXECUTION_JUPYTER_AUTH",
"code_execution.jupyter.auth",
os.environ.get("CODE_EXECUTION_JUPYTER_AUTH", ""),
)
CODE_EXECUTION_JUPYTER_AUTH_TOKEN = PersistentConfig(
"CODE_EXECUTION_JUPYTER_AUTH_TOKEN",
"code_execution.jupyter.auth_token",
os.environ.get("CODE_EXECUTION_JUPYTER_AUTH_TOKEN", ""),
)
CODE_EXECUTION_JUPYTER_AUTH_PASSWORD = PersistentConfig(
"CODE_EXECUTION_JUPYTER_AUTH_PASSWORD",
"code_execution.jupyter.auth_password",
os.environ.get("CODE_EXECUTION_JUPYTER_AUTH_PASSWORD", ""),
)
CODE_EXECUTION_JUPYTER_TIMEOUT = PersistentConfig(
"CODE_EXECUTION_JUPYTER_TIMEOUT",
"code_execution.jupyter.timeout",
int(os.environ.get("CODE_EXECUTION_JUPYTER_TIMEOUT", "60")),
)
ENABLE_CODE_INTERPRETER = PersistentConfig(
"ENABLE_CODE_INTERPRETER",
"code_interpreter.enable",
os.environ.get("ENABLE_CODE_INTERPRETER", "True").lower() == "true",
)
CODE_INTERPRETER_ENGINE = PersistentConfig(
"CODE_INTERPRETER_ENGINE",
"code_interpreter.engine",
os.environ.get("CODE_INTERPRETER_ENGINE", "pyodide"),
)
CODE_INTERPRETER_PROMPT_TEMPLATE = PersistentConfig(
"CODE_INTERPRETER_PROMPT_TEMPLATE",
"code_interpreter.prompt_template",
os.environ.get("CODE_INTERPRETER_PROMPT_TEMPLATE", ""),
)
CODE_INTERPRETER_JUPYTER_URL = PersistentConfig(
"CODE_INTERPRETER_JUPYTER_URL",
"code_interpreter.jupyter.url",
os.environ.get(
"CODE_INTERPRETER_JUPYTER_URL", os.environ.get("CODE_EXECUTION_JUPYTER_URL", "")
),
)
CODE_INTERPRETER_JUPYTER_AUTH = PersistentConfig(
"CODE_INTERPRETER_JUPYTER_AUTH",
"code_interpreter.jupyter.auth",
os.environ.get(
"CODE_INTERPRETER_JUPYTER_AUTH",
os.environ.get("CODE_EXECUTION_JUPYTER_AUTH", ""),
),
)
CODE_INTERPRETER_JUPYTER_AUTH_TOKEN = PersistentConfig(
"CODE_INTERPRETER_JUPYTER_AUTH_TOKEN",
"code_interpreter.jupyter.auth_token",
os.environ.get(
"CODE_INTERPRETER_JUPYTER_AUTH_TOKEN",
os.environ.get("CODE_EXECUTION_JUPYTER_AUTH_TOKEN", ""),
),
)
CODE_INTERPRETER_JUPYTER_AUTH_PASSWORD = PersistentConfig(
"CODE_INTERPRETER_JUPYTER_AUTH_PASSWORD",
"code_interpreter.jupyter.auth_password",
os.environ.get(
"CODE_INTERPRETER_JUPYTER_AUTH_PASSWORD",
os.environ.get("CODE_EXECUTION_JUPYTER_AUTH_PASSWORD", ""),
),
)
CODE_INTERPRETER_JUPYTER_TIMEOUT = PersistentConfig(
"CODE_INTERPRETER_JUPYTER_TIMEOUT",
"code_interpreter.jupyter.timeout",
int(
os.environ.get(
"CODE_INTERPRETER_JUPYTER_TIMEOUT",
os.environ.get("CODE_EXECUTION_JUPYTER_TIMEOUT", "60"),
)
),
)
CODE_INTERPRETER_BLOCKED_MODULES = [
library.strip()
for library in os.environ.get("CODE_INTERPRETER_BLOCKED_MODULES", "").split(",")
if library.strip()
]
DEFAULT_CODE_INTERPRETER_PROMPT = """
#### Tools Available
1. **Code Interpreter**: `<code_interpreter type="code" lang="python"></code_interpreter>`
- You have access to a Python shell that runs directly in the user's browser, enabling fast execution of code for analysis, calculations, or problem-solving. Use it in this response.
- The Python code you write can incorporate a wide array of libraries, handle data manipulation or visualization, perform API calls for web-related tasks, or tackle virtually any computational challenge. Use this flexibility to **think outside the box, craft elegant solutions, and harness Python's full potential**.
- To use it, **you must enclose your code within `<code_interpreter type="code" lang="python">` XML tags** and stop right away. If you don't, the code won't execute.
- When writing code in the code_interpreter XML tag, Do NOT use the triple backticks code block for markdown formatting, example: ```py # python code ``` will cause an error because it is markdown formatting, it is not python code.
- When coding, **always aim to print meaningful outputs** (e.g., results, tables, summaries, or visuals) to better interpret and verify the findings. Avoid relying on implicit outputs; prioritize explicit and clear print statements so the results are effectively communicated to the user.
- After obtaining the printed output, **always provide a concise analysis, interpretation, or next steps to help the user understand the findings or refine the outcome further.**
- If the results are unclear, unexpected, or require validation, refine the code and execute it again as needed. Always aim to deliver meaningful insights from the results, iterating if necessary.
- **If a link to an image, audio, or any file is provided in markdown format in the output, ALWAYS regurgitate word for word, explicitly display it as part of the response to ensure the user can access it easily, do NOT change the link.**
- All responses should be communicated in the chat's primary language, ensuring seamless understanding. If the chat is multilingual, default to English for clarity.
Ensure that the tools are effectively utilized to achieve the highest-quality analysis for the user."""
####################################
# Vector Database
####################################
VECTOR_DB = os.environ.get("VECTOR_DB", "chroma")
# Chroma
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
if VECTOR_DB == "chroma":
import chromadb
CHROMA_TENANT = os.environ.get("CHROMA_TENANT", chromadb.DEFAULT_TENANT)
CHROMA_DATABASE = os.environ.get("CHROMA_DATABASE", chromadb.DEFAULT_DATABASE)
CHROMA_HTTP_HOST = os.environ.get("CHROMA_HTTP_HOST", "")
CHROMA_HTTP_PORT = int(os.environ.get("CHROMA_HTTP_PORT", "8000"))
CHROMA_CLIENT_AUTH_PROVIDER = os.environ.get("CHROMA_CLIENT_AUTH_PROVIDER", "")
CHROMA_CLIENT_AUTH_CREDENTIALS = os.environ.get(
"CHROMA_CLIENT_AUTH_CREDENTIALS", ""
)
# Comma-separated list of header=value pairs
CHROMA_HTTP_HEADERS = os.environ.get("CHROMA_HTTP_HEADERS", "")
if CHROMA_HTTP_HEADERS:
CHROMA_HTTP_HEADERS = dict(
[pair.split("=") for pair in CHROMA_HTTP_HEADERS.split(",")]
)
else:
CHROMA_HTTP_HEADERS = None
CHROMA_HTTP_SSL = os.environ.get("CHROMA_HTTP_SSL", "false").lower() == "true"
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (sentence-transformers/all-MiniLM-L6-v2)
# Milvus
MILVUS_URI = os.environ.get("MILVUS_URI", f"{DATA_DIR}/vector_db/milvus.db")
MILVUS_DB = os.environ.get("MILVUS_DB", "default")
MILVUS_TOKEN = os.environ.get("MILVUS_TOKEN", None)
MILVUS_INDEX_TYPE = os.environ.get("MILVUS_INDEX_TYPE", "HNSW")
MILVUS_METRIC_TYPE = os.environ.get("MILVUS_METRIC_TYPE", "COSINE")
MILVUS_HNSW_M = int(os.environ.get("MILVUS_HNSW_M", "16"))
MILVUS_HNSW_EFCONSTRUCTION = int(os.environ.get("MILVUS_HNSW_EFCONSTRUCTION", "100"))
MILVUS_IVF_FLAT_NLIST = int(os.environ.get("MILVUS_IVF_FLAT_NLIST", "128"))
MILVUS_DISKANN_MAX_DEGREE = int(os.environ.get("MILVUS_DISKANN_MAX_DEGREE", "56"))
MILVUS_DISKANN_SEARCH_LIST_SIZE = int(
os.environ.get("MILVUS_DISKANN_SEARCH_LIST_SIZE", "100")
)
ENABLE_MILVUS_MULTITENANCY_MODE = (
os.environ.get("ENABLE_MILVUS_MULTITENANCY_MODE", "false").lower() == "true"
)
# Hyphens not allowed, need to use underscores in collection names
MILVUS_COLLECTION_PREFIX = os.environ.get("MILVUS_COLLECTION_PREFIX", "open_webui")
# Qdrant
QDRANT_URI = os.environ.get("QDRANT_URI", None)
QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY", None)
QDRANT_ON_DISK = os.environ.get("QDRANT_ON_DISK", "false").lower() == "true"
QDRANT_PREFER_GRPC = os.environ.get("QDRANT_PREFER_GRPC", "false").lower() == "true"
QDRANT_GRPC_PORT = int(os.environ.get("QDRANT_GRPC_PORT", "6334"))
QDRANT_TIMEOUT = int(os.environ.get("QDRANT_TIMEOUT", "5"))
QDRANT_HNSW_M = int(os.environ.get("QDRANT_HNSW_M", "16"))
ENABLE_QDRANT_MULTITENANCY_MODE = (
os.environ.get("ENABLE_QDRANT_MULTITENANCY_MODE", "true").lower() == "true"
)
QDRANT_COLLECTION_PREFIX = os.environ.get("QDRANT_COLLECTION_PREFIX", "open-webui")
# OpenSearch
OPENSEARCH_URI = os.environ.get("OPENSEARCH_URI", "https://localhost:9200")
OPENSEARCH_SSL = os.environ.get("OPENSEARCH_SSL", "true").lower() == "true"
OPENSEARCH_CERT_VERIFY = (
os.environ.get("OPENSEARCH_CERT_VERIFY", "false").lower() == "true"
)
OPENSEARCH_USERNAME = os.environ.get("OPENSEARCH_USERNAME", None)
OPENSEARCH_PASSWORD = os.environ.get("OPENSEARCH_PASSWORD", None)
# ElasticSearch
ELASTICSEARCH_URL = os.environ.get("ELASTICSEARCH_URL", "https://localhost:9200")
ELASTICSEARCH_CA_CERTS = os.environ.get("ELASTICSEARCH_CA_CERTS", None)
ELASTICSEARCH_API_KEY = os.environ.get("ELASTICSEARCH_API_KEY", None)
ELASTICSEARCH_USERNAME = os.environ.get("ELASTICSEARCH_USERNAME", None)
ELASTICSEARCH_PASSWORD = os.environ.get("ELASTICSEARCH_PASSWORD", None)
ELASTICSEARCH_CLOUD_ID = os.environ.get("ELASTICSEARCH_CLOUD_ID", None)
SSL_ASSERT_FINGERPRINT = os.environ.get("SSL_ASSERT_FINGERPRINT", None)
ELASTICSEARCH_INDEX_PREFIX = os.environ.get(
"ELASTICSEARCH_INDEX_PREFIX", "open_webui_collections"
)
# Pgvector
PGVECTOR_DB_URL = os.environ.get("PGVECTOR_DB_URL", DATABASE_URL)
if VECTOR_DB == "pgvector" and not PGVECTOR_DB_URL.startswith("postgres"):
raise ValueError(
"Pgvector requires setting PGVECTOR_DB_URL or using Postgres with vector extension as the primary database."
)
PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH = int(
os.environ.get("PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH", "1536")
)
PGVECTOR_CREATE_EXTENSION = (
os.getenv("PGVECTOR_CREATE_EXTENSION", "true").lower() == "true"
)
PGVECTOR_PGCRYPTO = os.getenv("PGVECTOR_PGCRYPTO", "false").lower() == "true"
PGVECTOR_PGCRYPTO_KEY = os.getenv("PGVECTOR_PGCRYPTO_KEY", None)
if PGVECTOR_PGCRYPTO and not PGVECTOR_PGCRYPTO_KEY:
raise ValueError(
"PGVECTOR_PGCRYPTO is enabled but PGVECTOR_PGCRYPTO_KEY is not set. Please provide a valid key."
)
PGVECTOR_POOL_SIZE = os.environ.get("PGVECTOR_POOL_SIZE", None)
if PGVECTOR_POOL_SIZE != None:
try:
PGVECTOR_POOL_SIZE = int(PGVECTOR_POOL_SIZE)
except Exception:
PGVECTOR_POOL_SIZE = None
PGVECTOR_POOL_MAX_OVERFLOW = os.environ.get("PGVECTOR_POOL_MAX_OVERFLOW", 0)
if PGVECTOR_POOL_MAX_OVERFLOW == "":
PGVECTOR_POOL_MAX_OVERFLOW = 0
else:
try:
PGVECTOR_POOL_MAX_OVERFLOW = int(PGVECTOR_POOL_MAX_OVERFLOW)
except Exception:
PGVECTOR_POOL_MAX_OVERFLOW = 0
PGVECTOR_POOL_TIMEOUT = os.environ.get("PGVECTOR_POOL_TIMEOUT", 30)
if PGVECTOR_POOL_TIMEOUT == "":
PGVECTOR_POOL_TIMEOUT = 30
else:
try:
PGVECTOR_POOL_TIMEOUT = int(PGVECTOR_POOL_TIMEOUT)
except Exception:
PGVECTOR_POOL_TIMEOUT = 30
PGVECTOR_POOL_RECYCLE = os.environ.get("PGVECTOR_POOL_RECYCLE", 3600)
if PGVECTOR_POOL_RECYCLE == "":
PGVECTOR_POOL_RECYCLE = 3600
else:
try:
PGVECTOR_POOL_RECYCLE = int(PGVECTOR_POOL_RECYCLE)
except Exception:
PGVECTOR_POOL_RECYCLE = 3600
# Pinecone
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY", None)
PINECONE_ENVIRONMENT = os.environ.get("PINECONE_ENVIRONMENT", None)
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME", "open-webui-index")
PINECONE_DIMENSION = int(os.getenv("PINECONE_DIMENSION", 1536)) # or 3072, 1024, 768
PINECONE_METRIC = os.getenv("PINECONE_METRIC", "cosine")
PINECONE_CLOUD = os.getenv("PINECONE_CLOUD", "aws") # or "gcp" or "azure"
# ORACLE23AI (Oracle23ai Vector Search)
ORACLE_DB_USE_WALLET = os.environ.get("ORACLE_DB_USE_WALLET", "false").lower() == "true"
ORACLE_DB_USER = os.environ.get("ORACLE_DB_USER", None) #
ORACLE_DB_PASSWORD = os.environ.get("ORACLE_DB_PASSWORD", None) #
ORACLE_DB_DSN = os.environ.get("ORACLE_DB_DSN", None) #
ORACLE_WALLET_DIR = os.environ.get("ORACLE_WALLET_DIR", None)
ORACLE_WALLET_PASSWORD = os.environ.get("ORACLE_WALLET_PASSWORD", None)
ORACLE_VECTOR_LENGTH = os.environ.get("ORACLE_VECTOR_LENGTH", 768)
ORACLE_DB_POOL_MIN = int(os.environ.get("ORACLE_DB_POOL_MIN", 2))
ORACLE_DB_POOL_MAX = int(os.environ.get("ORACLE_DB_POOL_MAX", 10))
ORACLE_DB_POOL_INCREMENT = int(os.environ.get("ORACLE_DB_POOL_INCREMENT", 1))
if VECTOR_DB == "oracle23ai":
if not ORACLE_DB_USER or not ORACLE_DB_PASSWORD or not ORACLE_DB_DSN:
raise ValueError(
"Oracle23ai requires setting ORACLE_DB_USER, ORACLE_DB_PASSWORD, and ORACLE_DB_DSN."
)
if ORACLE_DB_USE_WALLET and (not ORACLE_WALLET_DIR or not ORACLE_WALLET_PASSWORD):
raise ValueError(
"Oracle23ai requires setting ORACLE_WALLET_DIR and ORACLE_WALLET_PASSWORD when using wallet authentication."
)
log.info(f"VECTOR_DB: {VECTOR_DB}")
# S3 Vector
S3_VECTOR_BUCKET_NAME = os.environ.get("S3_VECTOR_BUCKET_NAME", None)
S3_VECTOR_REGION = os.environ.get("S3_VECTOR_REGION", None)
####################################
# Information Retrieval (RAG)
####################################
# If configured, Google Drive will be available as an upload option.
ENABLE_GOOGLE_DRIVE_INTEGRATION = PersistentConfig(
"ENABLE_GOOGLE_DRIVE_INTEGRATION",
"google_drive.enable",
os.getenv("ENABLE_GOOGLE_DRIVE_INTEGRATION", "False").lower() == "true",
)
GOOGLE_DRIVE_CLIENT_ID = PersistentConfig(
"GOOGLE_DRIVE_CLIENT_ID",
"google_drive.client_id",
os.environ.get("GOOGLE_DRIVE_CLIENT_ID", ""),
)
GOOGLE_DRIVE_API_KEY = PersistentConfig(
"GOOGLE_DRIVE_API_KEY",
"google_drive.api_key",
os.environ.get("GOOGLE_DRIVE_API_KEY", ""),
)
ENABLE_ONEDRIVE_INTEGRATION = PersistentConfig(
"ENABLE_ONEDRIVE_INTEGRATION",
"onedrive.enable",
os.getenv("ENABLE_ONEDRIVE_INTEGRATION", "False").lower() == "true",
)
ENABLE_ONEDRIVE_PERSONAL = (
os.environ.get("ENABLE_ONEDRIVE_PERSONAL", "True").lower() == "true"
)
ENABLE_ONEDRIVE_BUSINESS = (
os.environ.get("ENABLE_ONEDRIVE_BUSINESS", "True").lower() == "true"
)
ONEDRIVE_CLIENT_ID = os.environ.get("ONEDRIVE_CLIENT_ID", "")
ONEDRIVE_CLIENT_ID_PERSONAL = os.environ.get(
"ONEDRIVE_CLIENT_ID_PERSONAL", ONEDRIVE_CLIENT_ID
)
ONEDRIVE_CLIENT_ID_BUSINESS = os.environ.get(
"ONEDRIVE_CLIENT_ID_BUSINESS", ONEDRIVE_CLIENT_ID
)
ONEDRIVE_SHAREPOINT_URL = PersistentConfig(
"ONEDRIVE_SHAREPOINT_URL",
"onedrive.sharepoint_url",
os.environ.get("ONEDRIVE_SHAREPOINT_URL", ""),
)
ONEDRIVE_SHAREPOINT_TENANT_ID = PersistentConfig(
"ONEDRIVE_SHAREPOINT_TENANT_ID",
"onedrive.sharepoint_tenant_id",
os.environ.get("ONEDRIVE_SHAREPOINT_TENANT_ID", ""),
)
# RAG Content Extraction
CONTENT_EXTRACTION_ENGINE = PersistentConfig(
"CONTENT_EXTRACTION_ENGINE",
"rag.CONTENT_EXTRACTION_ENGINE",
os.environ.get("CONTENT_EXTRACTION_ENGINE", "").lower(),
)
DATALAB_MARKER_API_KEY = PersistentConfig(
"DATALAB_MARKER_API_KEY",
"rag.datalab_marker_api_key",
os.environ.get("DATALAB_MARKER_API_KEY", ""),
)
DATALAB_MARKER_API_BASE_URL = PersistentConfig(
"DATALAB_MARKER_API_BASE_URL",
"rag.datalab_marker_api_base_url",
os.environ.get("DATALAB_MARKER_API_BASE_URL", ""),
)
DATALAB_MARKER_ADDITIONAL_CONFIG = PersistentConfig(
"DATALAB_MARKER_ADDITIONAL_CONFIG",
"rag.datalab_marker_additional_config",
os.environ.get("DATALAB_MARKER_ADDITIONAL_CONFIG", ""),
)
DATALAB_MARKER_USE_LLM = PersistentConfig(
"DATALAB_MARKER_USE_LLM",
"rag.DATALAB_MARKER_USE_LLM",
os.environ.get("DATALAB_MARKER_USE_LLM", "false").lower() == "true",
)
DATALAB_MARKER_SKIP_CACHE = PersistentConfig(
"DATALAB_MARKER_SKIP_CACHE",
"rag.datalab_marker_skip_cache",
os.environ.get("DATALAB_MARKER_SKIP_CACHE", "false").lower() == "true",
)
DATALAB_MARKER_FORCE_OCR = PersistentConfig(
"DATALAB_MARKER_FORCE_OCR",
"rag.datalab_marker_force_ocr",
os.environ.get("DATALAB_MARKER_FORCE_OCR", "false").lower() == "true",
)
DATALAB_MARKER_PAGINATE = PersistentConfig(
"DATALAB_MARKER_PAGINATE",
"rag.datalab_marker_paginate",
os.environ.get("DATALAB_MARKER_PAGINATE", "false").lower() == "true",
)
DATALAB_MARKER_STRIP_EXISTING_OCR = PersistentConfig(
"DATALAB_MARKER_STRIP_EXISTING_OCR",
"rag.datalab_marker_strip_existing_ocr",
os.environ.get("DATALAB_MARKER_STRIP_EXISTING_OCR", "false").lower() == "true",
)
DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION = PersistentConfig(
"DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION",
"rag.datalab_marker_disable_image_extraction",
os.environ.get("DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION", "false").lower()
== "true",
)
DATALAB_MARKER_FORMAT_LINES = PersistentConfig(
"DATALAB_MARKER_FORMAT_LINES",
"rag.datalab_marker_format_lines",
os.environ.get("DATALAB_MARKER_FORMAT_LINES", "false").lower() == "true",
)
DATALAB_MARKER_OUTPUT_FORMAT = PersistentConfig(
"DATALAB_MARKER_OUTPUT_FORMAT",
"rag.datalab_marker_output_format",
os.environ.get("DATALAB_MARKER_OUTPUT_FORMAT", "markdown"),
)
EXTERNAL_DOCUMENT_LOADER_URL = PersistentConfig(
"EXTERNAL_DOCUMENT_LOADER_URL",
"rag.external_document_loader_url",
os.environ.get("EXTERNAL_DOCUMENT_LOADER_URL", ""),
)
EXTERNAL_DOCUMENT_LOADER_API_KEY = PersistentConfig(
"EXTERNAL_DOCUMENT_LOADER_API_KEY",
"rag.external_document_loader_api_key",
os.environ.get("EXTERNAL_DOCUMENT_LOADER_API_KEY", ""),
)
TIKA_SERVER_URL = PersistentConfig(
"TIKA_SERVER_URL",
"rag.tika_server_url",
os.getenv("TIKA_SERVER_URL", "http://tika:9998"), # Default for sidecar deployment
)
DOCLING_SERVER_URL = PersistentConfig(
"DOCLING_SERVER_URL",
"rag.docling_server_url",
os.getenv("DOCLING_SERVER_URL", "http://docling:5001"),
)
docling_params = os.getenv("DOCLING_PARAMS", "")
try:
docling_params = json.loads(docling_params)
except json.JSONDecodeError:
docling_params = {}
DOCLING_PARAMS = PersistentConfig(
"DOCLING_PARAMS",
"rag.docling_params",
docling_params,
)
DOCLING_DO_OCR = PersistentConfig(
"DOCLING_DO_OCR",
"rag.docling_do_ocr",
os.getenv("DOCLING_DO_OCR", "True").lower() == "true",
)
DOCLING_FORCE_OCR = PersistentConfig(
"DOCLING_FORCE_OCR",
"rag.docling_force_ocr",
os.getenv("DOCLING_FORCE_OCR", "False").lower() == "true",
)
DOCLING_OCR_ENGINE = PersistentConfig(
"DOCLING_OCR_ENGINE",
"rag.docling_ocr_engine",
os.getenv("DOCLING_OCR_ENGINE", "tesseract"),
)
DOCLING_OCR_LANG = PersistentConfig(
"DOCLING_OCR_LANG",
"rag.docling_ocr_lang",
os.getenv("DOCLING_OCR_LANG", "eng,fra,deu,spa"),
)
DOCLING_PDF_BACKEND = PersistentConfig(
"DOCLING_PDF_BACKEND",
"rag.docling_pdf_backend",
os.getenv("DOCLING_PDF_BACKEND", "dlparse_v4"),
)
DOCLING_TABLE_MODE = PersistentConfig(
"DOCLING_TABLE_MODE",
"rag.docling_table_mode",
os.getenv("DOCLING_TABLE_MODE", "accurate"),
)
DOCLING_PIPELINE = PersistentConfig(
"DOCLING_PIPELINE",
"rag.docling_pipeline",
os.getenv("DOCLING_PIPELINE", "standard"),
)
DOCLING_DO_PICTURE_DESCRIPTION = PersistentConfig(
"DOCLING_DO_PICTURE_DESCRIPTION",
"rag.docling_do_picture_description",
os.getenv("DOCLING_DO_PICTURE_DESCRIPTION", "False").lower() == "true",
)
DOCLING_PICTURE_DESCRIPTION_MODE = PersistentConfig(
"DOCLING_PICTURE_DESCRIPTION_MODE",
"rag.docling_picture_description_mode",
os.getenv("DOCLING_PICTURE_DESCRIPTION_MODE", ""),
)
docling_picture_description_local = os.getenv("DOCLING_PICTURE_DESCRIPTION_LOCAL", "")
try:
docling_picture_description_local = json.loads(docling_picture_description_local)
except json.JSONDecodeError:
docling_picture_description_local = {}
DOCLING_PICTURE_DESCRIPTION_LOCAL = PersistentConfig(
"DOCLING_PICTURE_DESCRIPTION_LOCAL",
"rag.docling_picture_description_local",
docling_picture_description_local,
)
docling_picture_description_api = os.getenv("DOCLING_PICTURE_DESCRIPTION_API", "")
try:
docling_picture_description_api = json.loads(docling_picture_description_api)
except json.JSONDecodeError:
docling_picture_description_api = {}
DOCLING_PICTURE_DESCRIPTION_API = PersistentConfig(
"DOCLING_PICTURE_DESCRIPTION_API",
"rag.docling_picture_description_api",
docling_picture_description_api,
)
DOCUMENT_INTELLIGENCE_ENDPOINT = PersistentConfig(
"DOCUMENT_INTELLIGENCE_ENDPOINT",
"rag.document_intelligence_endpoint",
os.getenv("DOCUMENT_INTELLIGENCE_ENDPOINT", ""),
)
DOCUMENT_INTELLIGENCE_KEY = PersistentConfig(
"DOCUMENT_INTELLIGENCE_KEY",
"rag.document_intelligence_key",
os.getenv("DOCUMENT_INTELLIGENCE_KEY", ""),
)
MISTRAL_OCR_API_KEY = PersistentConfig(
"MISTRAL_OCR_API_KEY",
"rag.mistral_ocr_api_key",
os.getenv("MISTRAL_OCR_API_KEY", ""),
)
BYPASS_EMBEDDING_AND_RETRIEVAL = PersistentConfig(
"BYPASS_EMBEDDING_AND_RETRIEVAL",
"rag.bypass_embedding_and_retrieval",
os.environ.get("BYPASS_EMBEDDING_AND_RETRIEVAL", "False").lower() == "true",
)
RAG_TOP_K = PersistentConfig(
"RAG_TOP_K", "rag.top_k", int(os.environ.get("RAG_TOP_K", "3"))
)
RAG_TOP_K_RERANKER = PersistentConfig(
"RAG_TOP_K_RERANKER",
"rag.top_k_reranker",
int(os.environ.get("RAG_TOP_K_RERANKER", "3")),
)
RAG_RELEVANCE_THRESHOLD = PersistentConfig(
"RAG_RELEVANCE_THRESHOLD",
"rag.relevance_threshold",
float(os.environ.get("RAG_RELEVANCE_THRESHOLD", "0.0")),
)
RAG_HYBRID_BM25_WEIGHT = PersistentConfig(
"RAG_HYBRID_BM25_WEIGHT",
"rag.hybrid_bm25_weight",
float(os.environ.get("RAG_HYBRID_BM25_WEIGHT", "0.5")),
)
ENABLE_RAG_HYBRID_SEARCH = PersistentConfig(
"ENABLE_RAG_HYBRID_SEARCH",
"rag.enable_hybrid_search",
os.environ.get("ENABLE_RAG_HYBRID_SEARCH", "").lower() == "true",
)
RAG_FULL_CONTEXT = PersistentConfig(
"RAG_FULL_CONTEXT",
"rag.full_context",
os.getenv("RAG_FULL_CONTEXT", "False").lower() == "true",
)
RAG_FILE_MAX_COUNT = PersistentConfig(
"RAG_FILE_MAX_COUNT",
"rag.file.max_count",
(
int(os.environ.get("RAG_FILE_MAX_COUNT"))
if os.environ.get("RAG_FILE_MAX_COUNT")
else None
),
)
RAG_FILE_MAX_SIZE = PersistentConfig(
"RAG_FILE_MAX_SIZE",
"rag.file.max_size",
(
int(os.environ.get("RAG_FILE_MAX_SIZE"))
if os.environ.get("RAG_FILE_MAX_SIZE")
else None
),
)
FILE_IMAGE_COMPRESSION_WIDTH = PersistentConfig(
"FILE_IMAGE_COMPRESSION_WIDTH",
"file.image_compression_width",
(
int(os.environ.get("FILE_IMAGE_COMPRESSION_WIDTH"))
if os.environ.get("FILE_IMAGE_COMPRESSION_WIDTH")
else None
),
)
FILE_IMAGE_COMPRESSION_HEIGHT = PersistentConfig(
"FILE_IMAGE_COMPRESSION_HEIGHT",
"file.image_compression_height",
(
int(os.environ.get("FILE_IMAGE_COMPRESSION_HEIGHT"))
if os.environ.get("FILE_IMAGE_COMPRESSION_HEIGHT")
else None
),
)
RAG_ALLOWED_FILE_EXTENSIONS = PersistentConfig(
"RAG_ALLOWED_FILE_EXTENSIONS",
"rag.file.allowed_extensions",
[
ext.strip()
for ext in os.environ.get("RAG_ALLOWED_FILE_EXTENSIONS", "").split(",")
if ext.strip()
],
)
RAG_EMBEDDING_ENGINE = PersistentConfig(
"RAG_EMBEDDING_ENGINE",
"rag.embedding_engine",
os.environ.get("RAG_EMBEDDING_ENGINE", ""),
)
PDF_EXTRACT_IMAGES = PersistentConfig(
"PDF_EXTRACT_IMAGES",
"rag.pdf_extract_images",
os.environ.get("PDF_EXTRACT_IMAGES", "False").lower() == "true",
)
RAG_EMBEDDING_MODEL = PersistentConfig(
"RAG_EMBEDDING_MODEL",
"rag.embedding_model",
os.environ.get("RAG_EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2"),
)
log.info(f"Embedding model set: {RAG_EMBEDDING_MODEL.value}")
RAG_EMBEDDING_MODEL_AUTO_UPDATE = (
not OFFLINE_MODE
and os.environ.get("RAG_EMBEDDING_MODEL_AUTO_UPDATE", "True").lower() == "true"
)
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = (
os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "True").lower() == "true"
)
RAG_EMBEDDING_BATCH_SIZE = PersistentConfig(
"RAG_EMBEDDING_BATCH_SIZE",
"rag.embedding_batch_size",
int(
os.environ.get("RAG_EMBEDDING_BATCH_SIZE")
or os.environ.get("RAG_EMBEDDING_OPENAI_BATCH_SIZE", "1")
),
)
RAG_EMBEDDING_QUERY_PREFIX = os.environ.get("RAG_EMBEDDING_QUERY_PREFIX", None)
RAG_EMBEDDING_CONTENT_PREFIX = os.environ.get("RAG_EMBEDDING_CONTENT_PREFIX", None)
RAG_EMBEDDING_PREFIX_FIELD_NAME = os.environ.get(
"RAG_EMBEDDING_PREFIX_FIELD_NAME", None
)
RAG_RERANKING_ENGINE = PersistentConfig(
"RAG_RERANKING_ENGINE",
"rag.reranking_engine",
os.environ.get("RAG_RERANKING_ENGINE", ""),
)
RAG_RERANKING_MODEL = PersistentConfig(
"RAG_RERANKING_MODEL",
"rag.reranking_model",
os.environ.get("RAG_RERANKING_MODEL", ""),
)
if RAG_RERANKING_MODEL.value != "":
log.info(f"Reranking model set: {RAG_RERANKING_MODEL.value}")
RAG_RERANKING_MODEL_AUTO_UPDATE = (
not OFFLINE_MODE
and os.environ.get("RAG_RERANKING_MODEL_AUTO_UPDATE", "True").lower() == "true"
)
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE = (
os.environ.get("RAG_RERANKING_MODEL_TRUST_REMOTE_CODE", "True").lower() == "true"
)
RAG_EXTERNAL_RERANKER_URL = PersistentConfig(
"RAG_EXTERNAL_RERANKER_URL",
"rag.external_reranker_url",
os.environ.get("RAG_EXTERNAL_RERANKER_URL", ""),
)
RAG_EXTERNAL_RERANKER_API_KEY = PersistentConfig(
"RAG_EXTERNAL_RERANKER_API_KEY",
"rag.external_reranker_api_key",
os.environ.get("RAG_EXTERNAL_RERANKER_API_KEY", ""),
)
RAG_TEXT_SPLITTER = PersistentConfig(
"RAG_TEXT_SPLITTER",
"rag.text_splitter",
os.environ.get("RAG_TEXT_SPLITTER", ""),
)
TIKTOKEN_CACHE_DIR = os.environ.get("TIKTOKEN_CACHE_DIR", f"{CACHE_DIR}/tiktoken")
TIKTOKEN_ENCODING_NAME = PersistentConfig(
"TIKTOKEN_ENCODING_NAME",
"rag.tiktoken_encoding_name",
os.environ.get("TIKTOKEN_ENCODING_NAME", "cl100k_base"),
)
CHUNK_SIZE = PersistentConfig(
"CHUNK_SIZE", "rag.chunk_size", int(os.environ.get("CHUNK_SIZE", "1000"))
)
CHUNK_OVERLAP = PersistentConfig(
"CHUNK_OVERLAP",
"rag.chunk_overlap",
int(os.environ.get("CHUNK_OVERLAP", "100")),
)
DEFAULT_RAG_TEMPLATE = """### Task:
Respond to the user query using the provided context, incorporating inline citations in the format [id] **only when the <source> tag includes an explicit id attribute** (e.g., <source id="1">).
### Guidelines:
- If you don't know the answer, clearly state that.
- If uncertain, ask the user for clarification.
- Respond in the same language as the user's query.
- If the context is unreadable or of poor quality, inform the user and provide the best possible answer.
- If the answer isn't present in the context but you possess the knowledge, explain this to the user and provide the answer using your own understanding.
- **Only include inline citations using [id] (e.g., [1], [2]) when the <source> tag includes an id attribute.**
- Do not cite if the <source> tag does not contain an id attribute.
- Do not use XML tags in your response.
- Ensure citations are concise and directly related to the information provided.
### Example of Citation:
If the user asks about a specific topic and the information is found in a source with a provided id attribute, the response should include the citation like in the following example:
* "According to the study, the proposed method increases efficiency by 20% [1]."
### Output:
Provide a clear and direct response to the user's query, including inline citations in the format [id] only when the <source> tag with id attribute is present in the context.
<context>
{{CONTEXT}}
</context>
<user_query>
{{QUERY}}
</user_query>
"""
RAG_TEMPLATE = PersistentConfig(
"RAG_TEMPLATE",
"rag.template",
os.environ.get("RAG_TEMPLATE", DEFAULT_RAG_TEMPLATE),
)
RAG_OPENAI_API_BASE_URL = PersistentConfig(
"RAG_OPENAI_API_BASE_URL",
"rag.openai_api_base_url",
os.getenv("RAG_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL),
)
RAG_OPENAI_API_KEY = PersistentConfig(
"RAG_OPENAI_API_KEY",
"rag.openai_api_key",
os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY),
)
RAG_AZURE_OPENAI_BASE_URL = PersistentConfig(
"RAG_AZURE_OPENAI_BASE_URL",
"rag.azure_openai.base_url",
os.getenv("RAG_AZURE_OPENAI_BASE_URL", ""),
)
RAG_AZURE_OPENAI_API_KEY = PersistentConfig(
"RAG_AZURE_OPENAI_API_KEY",
"rag.azure_openai.api_key",
os.getenv("RAG_AZURE_OPENAI_API_KEY", ""),
)
RAG_AZURE_OPENAI_API_VERSION = PersistentConfig(
"RAG_AZURE_OPENAI_API_VERSION",
"rag.azure_openai.api_version",
os.getenv("RAG_AZURE_OPENAI_API_VERSION", ""),
)
RAG_OLLAMA_BASE_URL = PersistentConfig(
"RAG_OLLAMA_BASE_URL",
"rag.ollama.url",
os.getenv("RAG_OLLAMA_BASE_URL", OLLAMA_BASE_URL),
)
RAG_OLLAMA_API_KEY = PersistentConfig(
"RAG_OLLAMA_API_KEY",
"rag.ollama.key",
os.getenv("RAG_OLLAMA_API_KEY", ""),
)
ENABLE_RAG_LOCAL_WEB_FETCH = (
os.getenv("ENABLE_RAG_LOCAL_WEB_FETCH", "False").lower() == "true"
)
YOUTUBE_LOADER_LANGUAGE = PersistentConfig(
"YOUTUBE_LOADER_LANGUAGE",
"rag.youtube_loader_language",
os.getenv("YOUTUBE_LOADER_LANGUAGE", "en").split(","),
)
YOUTUBE_LOADER_PROXY_URL = PersistentConfig(
"YOUTUBE_LOADER_PROXY_URL",
"rag.youtube_loader_proxy_url",
os.getenv("YOUTUBE_LOADER_PROXY_URL", ""),
)
####################################
# Web Search (RAG)
####################################
ENABLE_WEB_SEARCH = PersistentConfig(
"ENABLE_WEB_SEARCH",
"rag.web.search.enable",
os.getenv("ENABLE_WEB_SEARCH", "False").lower() == "true",
)
WEB_SEARCH_ENGINE = PersistentConfig(
"WEB_SEARCH_ENGINE",
"rag.web.search.engine",
os.getenv("WEB_SEARCH_ENGINE", ""),
)
BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL = PersistentConfig(
"BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL",
"rag.web.search.bypass_embedding_and_retrieval",
os.getenv("BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL", "False").lower() == "true",
)
BYPASS_WEB_SEARCH_WEB_LOADER = PersistentConfig(
"BYPASS_WEB_SEARCH_WEB_LOADER",
"rag.web.search.bypass_web_loader",
os.getenv("BYPASS_WEB_SEARCH_WEB_LOADER", "False").lower() == "true",
)
WEB_SEARCH_RESULT_COUNT = PersistentConfig(
"WEB_SEARCH_RESULT_COUNT",
"rag.web.search.result_count",
int(os.getenv("WEB_SEARCH_RESULT_COUNT", "3")),
)
# You can provide a list of your own websites to filter after performing a web search.
# This ensures the highest level of safety and reliability of the information sources.
WEB_SEARCH_DOMAIN_FILTER_LIST = PersistentConfig(
"WEB_SEARCH_DOMAIN_FILTER_LIST",
"rag.web.search.domain.filter_list",
[
# "wikipedia.com",
# "wikimedia.org",
# "wikidata.org",
],
)
WEB_SEARCH_CONCURRENT_REQUESTS = PersistentConfig(
"WEB_SEARCH_CONCURRENT_REQUESTS",
"rag.web.search.concurrent_requests",
int(os.getenv("WEB_SEARCH_CONCURRENT_REQUESTS", "10")),
)
WEB_LOADER_ENGINE = PersistentConfig(
"WEB_LOADER_ENGINE",
"rag.web.loader.engine",
os.environ.get("WEB_LOADER_ENGINE", ""),
)
WEB_LOADER_CONCURRENT_REQUESTS = PersistentConfig(
"WEB_LOADER_CONCURRENT_REQUESTS",
"rag.web.loader.concurrent_requests",
int(os.getenv("WEB_LOADER_CONCURRENT_REQUESTS", "10")),
)
ENABLE_WEB_LOADER_SSL_VERIFICATION = PersistentConfig(
"ENABLE_WEB_LOADER_SSL_VERIFICATION",
"rag.web.loader.ssl_verification",
os.environ.get("ENABLE_WEB_LOADER_SSL_VERIFICATION", "True").lower() == "true",
)
WEB_SEARCH_TRUST_ENV = PersistentConfig(
"WEB_SEARCH_TRUST_ENV",
"rag.web.search.trust_env",
os.getenv("WEB_SEARCH_TRUST_ENV", "False").lower() == "true",
)
OLLAMA_CLOUD_WEB_SEARCH_API_KEY = PersistentConfig(
"OLLAMA_CLOUD_WEB_SEARCH_API_KEY",
"rag.web.search.ollama_cloud_api_key",
os.getenv("OLLAMA_CLOUD_API_KEY", ""),
)
SEARXNG_QUERY_URL = PersistentConfig(
"SEARXNG_QUERY_URL",
"rag.web.search.searxng_query_url",
os.getenv("SEARXNG_QUERY_URL", ""),
)
YACY_QUERY_URL = PersistentConfig(
"YACY_QUERY_URL",
"rag.web.search.yacy_query_url",
os.getenv("YACY_QUERY_URL", ""),
)
YACY_USERNAME = PersistentConfig(
"YACY_USERNAME",
"rag.web.search.yacy_username",
os.getenv("YACY_USERNAME", ""),
)
YACY_PASSWORD = PersistentConfig(
"YACY_PASSWORD",
"rag.web.search.yacy_password",
os.getenv("YACY_PASSWORD", ""),
)
GOOGLE_PSE_API_KEY = PersistentConfig(
"GOOGLE_PSE_API_KEY",
"rag.web.search.google_pse_api_key",
os.getenv("GOOGLE_PSE_API_KEY", ""),
)
GOOGLE_PSE_ENGINE_ID = PersistentConfig(
"GOOGLE_PSE_ENGINE_ID",
"rag.web.search.google_pse_engine_id",
os.getenv("GOOGLE_PSE_ENGINE_ID", ""),
)
BRAVE_SEARCH_API_KEY = PersistentConfig(
"BRAVE_SEARCH_API_KEY",
"rag.web.search.brave_search_api_key",
os.getenv("BRAVE_SEARCH_API_KEY", ""),
)
KAGI_SEARCH_API_KEY = PersistentConfig(
"KAGI_SEARCH_API_KEY",
"rag.web.search.kagi_search_api_key",
os.getenv("KAGI_SEARCH_API_KEY", ""),
)
MOJEEK_SEARCH_API_KEY = PersistentConfig(
"MOJEEK_SEARCH_API_KEY",
"rag.web.search.mojeek_search_api_key",
os.getenv("MOJEEK_SEARCH_API_KEY", ""),
)
BOCHA_SEARCH_API_KEY = PersistentConfig(
"BOCHA_SEARCH_API_KEY",
"rag.web.search.bocha_search_api_key",
os.getenv("BOCHA_SEARCH_API_KEY", ""),
)
SERPSTACK_API_KEY = PersistentConfig(
"SERPSTACK_API_KEY",
"rag.web.search.serpstack_api_key",
os.getenv("SERPSTACK_API_KEY", ""),
)
SERPSTACK_HTTPS = PersistentConfig(
"SERPSTACK_HTTPS",
"rag.web.search.serpstack_https",
os.getenv("SERPSTACK_HTTPS", "True").lower() == "true",
)
SERPER_API_KEY = PersistentConfig(
"SERPER_API_KEY",
"rag.web.search.serper_api_key",
os.getenv("SERPER_API_KEY", ""),
)
SERPLY_API_KEY = PersistentConfig(
"SERPLY_API_KEY",
"rag.web.search.serply_api_key",
os.getenv("SERPLY_API_KEY", ""),
)
JINA_API_KEY = PersistentConfig(
"JINA_API_KEY",
"rag.web.search.jina_api_key",
os.getenv("JINA_API_KEY", ""),
)
SEARCHAPI_API_KEY = PersistentConfig(
"SEARCHAPI_API_KEY",
"rag.web.search.searchapi_api_key",
os.getenv("SEARCHAPI_API_KEY", ""),
)
SEARCHAPI_ENGINE = PersistentConfig(
"SEARCHAPI_ENGINE",
"rag.web.search.searchapi_engine",
os.getenv("SEARCHAPI_ENGINE", ""),
)
SERPAPI_API_KEY = PersistentConfig(
"SERPAPI_API_KEY",
"rag.web.search.serpapi_api_key",
os.getenv("SERPAPI_API_KEY", ""),
)
SERPAPI_ENGINE = PersistentConfig(
"SERPAPI_ENGINE",
"rag.web.search.serpapi_engine",
os.getenv("SERPAPI_ENGINE", ""),
)
BING_SEARCH_V7_ENDPOINT = PersistentConfig(
"BING_SEARCH_V7_ENDPOINT",
"rag.web.search.bing_search_v7_endpoint",
os.environ.get(
"BING_SEARCH_V7_ENDPOINT", "https://api.bing.microsoft.com/v7.0/search"
),
)
BING_SEARCH_V7_SUBSCRIPTION_KEY = PersistentConfig(
"BING_SEARCH_V7_SUBSCRIPTION_KEY",
"rag.web.search.bing_search_v7_subscription_key",
os.environ.get("BING_SEARCH_V7_SUBSCRIPTION_KEY", ""),
)
EXA_API_KEY = PersistentConfig(
"EXA_API_KEY",
"rag.web.search.exa_api_key",
os.getenv("EXA_API_KEY", ""),
)
PERPLEXITY_API_KEY = PersistentConfig(
"PERPLEXITY_API_KEY",
"rag.web.search.perplexity_api_key",
os.getenv("PERPLEXITY_API_KEY", ""),
)
PERPLEXITY_MODEL = PersistentConfig(
"PERPLEXITY_MODEL",
"rag.web.search.perplexity_model",
os.getenv("PERPLEXITY_MODEL", "sonar"),
)
PERPLEXITY_SEARCH_CONTEXT_USAGE = PersistentConfig(
"PERPLEXITY_SEARCH_CONTEXT_USAGE",
"rag.web.search.perplexity_search_context_usage",
os.getenv("PERPLEXITY_SEARCH_CONTEXT_USAGE", "medium"),
)
SOUGOU_API_SID = PersistentConfig(
"SOUGOU_API_SID",
"rag.web.search.sougou_api_sid",
os.getenv("SOUGOU_API_SID", ""),
)
SOUGOU_API_SK = PersistentConfig(
"SOUGOU_API_SK",
"rag.web.search.sougou_api_sk",
os.getenv("SOUGOU_API_SK", ""),
)
TAVILY_API_KEY = PersistentConfig(
"TAVILY_API_KEY",
"rag.web.search.tavily_api_key",
os.getenv("TAVILY_API_KEY", ""),
)
TAVILY_EXTRACT_DEPTH = PersistentConfig(
"TAVILY_EXTRACT_DEPTH",
"rag.web.search.tavily_extract_depth",
os.getenv("TAVILY_EXTRACT_DEPTH", "basic"),
)
PLAYWRIGHT_WS_URL = PersistentConfig(
"PLAYWRIGHT_WS_URL",
"rag.web.loader.playwright_ws_url",
os.environ.get("PLAYWRIGHT_WS_URL", ""),
)
PLAYWRIGHT_TIMEOUT = PersistentConfig(
"PLAYWRIGHT_TIMEOUT",
"rag.web.loader.playwright_timeout",
int(os.environ.get("PLAYWRIGHT_TIMEOUT", "10000")),
)
FIRECRAWL_API_KEY = PersistentConfig(
"FIRECRAWL_API_KEY",
"rag.web.loader.firecrawl_api_key",
os.environ.get("FIRECRAWL_API_KEY", ""),
)
FIRECRAWL_API_BASE_URL = PersistentConfig(
"FIRECRAWL_API_BASE_URL",
"rag.web.loader.firecrawl_api_url",
os.environ.get("FIRECRAWL_API_BASE_URL", "https://api.firecrawl.dev"),
)
EXTERNAL_WEB_SEARCH_URL = PersistentConfig(
"EXTERNAL_WEB_SEARCH_URL",
"rag.web.search.external_web_search_url",
os.environ.get("EXTERNAL_WEB_SEARCH_URL", ""),
)
EXTERNAL_WEB_SEARCH_API_KEY = PersistentConfig(
"EXTERNAL_WEB_SEARCH_API_KEY",
"rag.web.search.external_web_search_api_key",
os.environ.get("EXTERNAL_WEB_SEARCH_API_KEY", ""),
)
EXTERNAL_WEB_LOADER_URL = PersistentConfig(
"EXTERNAL_WEB_LOADER_URL",
"rag.web.loader.external_web_loader_url",
os.environ.get("EXTERNAL_WEB_LOADER_URL", ""),
)
EXTERNAL_WEB_LOADER_API_KEY = PersistentConfig(
"EXTERNAL_WEB_LOADER_API_KEY",
"rag.web.loader.external_web_loader_api_key",
os.environ.get("EXTERNAL_WEB_LOADER_API_KEY", ""),
)
####################################
# Images
####################################
IMAGE_GENERATION_ENGINE = PersistentConfig(
"IMAGE_GENERATION_ENGINE",
"image_generation.engine",
os.getenv("IMAGE_GENERATION_ENGINE", "openai"),
)
ENABLE_IMAGE_GENERATION = PersistentConfig(
"ENABLE_IMAGE_GENERATION",
"image_generation.enable",
os.environ.get("ENABLE_IMAGE_GENERATION", "").lower() == "true",
)
ENABLE_IMAGE_PROMPT_GENERATION = PersistentConfig(
"ENABLE_IMAGE_PROMPT_GENERATION",
"image_generation.prompt.enable",
os.environ.get("ENABLE_IMAGE_PROMPT_GENERATION", "true").lower() == "true",
)
AUTOMATIC1111_BASE_URL = PersistentConfig(
"AUTOMATIC1111_BASE_URL",
"image_generation.automatic1111.base_url",
os.getenv("AUTOMATIC1111_BASE_URL", ""),
)
AUTOMATIC1111_API_AUTH = PersistentConfig(
"AUTOMATIC1111_API_AUTH",
"image_generation.automatic1111.api_auth",
os.getenv("AUTOMATIC1111_API_AUTH", ""),
)
AUTOMATIC1111_CFG_SCALE = PersistentConfig(
"AUTOMATIC1111_CFG_SCALE",
"image_generation.automatic1111.cfg_scale",
(
float(os.environ.get("AUTOMATIC1111_CFG_SCALE"))
if os.environ.get("AUTOMATIC1111_CFG_SCALE")
else None
),
)
AUTOMATIC1111_SAMPLER = PersistentConfig(
"AUTOMATIC1111_SAMPLER",
"image_generation.automatic1111.sampler",
(
os.environ.get("AUTOMATIC1111_SAMPLER")
if os.environ.get("AUTOMATIC1111_SAMPLER")
else None
),
)
AUTOMATIC1111_SCHEDULER = PersistentConfig(
"AUTOMATIC1111_SCHEDULER",
"image_generation.automatic1111.scheduler",
(
os.environ.get("AUTOMATIC1111_SCHEDULER")
if os.environ.get("AUTOMATIC1111_SCHEDULER")
else None
),
)
COMFYUI_BASE_URL = PersistentConfig(
"COMFYUI_BASE_URL",
"image_generation.comfyui.base_url",
os.getenv("COMFYUI_BASE_URL", ""),
)
COMFYUI_API_KEY = PersistentConfig(
"COMFYUI_API_KEY",
"image_generation.comfyui.api_key",
os.getenv("COMFYUI_API_KEY", ""),
)
COMFYUI_DEFAULT_WORKFLOW = """
{
"3": {
"inputs": {
"seed": 0,
"steps": 20,
"cfg": 8,
"sampler_name": "euler",
"scheduler": "normal",
"denoise": 1,
"model": [
"4",
0
],
"positive": [
"6",
0
],
"negative": [
"7",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "KSampler",
"_meta": {
"title": "KSampler"
}
},
"4": {
"inputs": {
"ckpt_name": "model.safetensors"
},
"class_type": "CheckpointLoaderSimple",
"_meta": {
"title": "Load Checkpoint"
}
},
"5": {
"inputs": {
"width": 512,
"height": 512,
"batch_size": 1
},
"class_type": "EmptyLatentImage",
"_meta": {
"title": "Empty Latent Image"
}
},
"6": {
"inputs": {
"text": "Prompt",
"clip": [
"4",
1
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "CLIP Text Encode (Prompt)"
}
},
"7": {
"inputs": {
"text": "",
"clip": [
"4",
1
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "CLIP Text Encode (Prompt)"
}
},
"8": {
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": "VAE Decode"
}
},
"9": {
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
},
"class_type": "SaveImage",
"_meta": {
"title": "Save Image"
}
}
}
"""
COMFYUI_WORKFLOW = PersistentConfig(
"COMFYUI_WORKFLOW",
"image_generation.comfyui.workflow",
os.getenv("COMFYUI_WORKFLOW", COMFYUI_DEFAULT_WORKFLOW),
)
COMFYUI_WORKFLOW_NODES = PersistentConfig(
"COMFYUI_WORKFLOW",
"image_generation.comfyui.nodes",
[],
)
IMAGES_OPENAI_API_BASE_URL = PersistentConfig(
"IMAGES_OPENAI_API_BASE_URL",
"image_generation.openai.api_base_url",
os.getenv("IMAGES_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL),
)
IMAGES_OPENAI_API_VERSION = PersistentConfig(
"IMAGES_OPENAI_API_VERSION",
"image_generation.openai.api_version",
os.getenv("IMAGES_OPENAI_API_VERSION", ""),
)
IMAGES_OPENAI_API_KEY = PersistentConfig(
"IMAGES_OPENAI_API_KEY",
"image_generation.openai.api_key",
os.getenv("IMAGES_OPENAI_API_KEY", OPENAI_API_KEY),
)
IMAGES_GEMINI_API_BASE_URL = PersistentConfig(
"IMAGES_GEMINI_API_BASE_URL",
"image_generation.gemini.api_base_url",
os.getenv("IMAGES_GEMINI_API_BASE_URL", GEMINI_API_BASE_URL),
)
IMAGES_GEMINI_API_KEY = PersistentConfig(
"IMAGES_GEMINI_API_KEY",
"image_generation.gemini.api_key",
os.getenv("IMAGES_GEMINI_API_KEY", GEMINI_API_KEY),
)
IMAGE_SIZE = PersistentConfig(
"IMAGE_SIZE", "image_generation.size", os.getenv("IMAGE_SIZE", "512x512")
)
IMAGE_STEPS = PersistentConfig(
"IMAGE_STEPS", "image_generation.steps", int(os.getenv("IMAGE_STEPS", 50))
)
IMAGE_GENERATION_MODEL = PersistentConfig(
"IMAGE_GENERATION_MODEL",
"image_generation.model",
os.getenv("IMAGE_GENERATION_MODEL", ""),
)
####################################
# Audio
####################################
# Transcription
WHISPER_MODEL = PersistentConfig(
"WHISPER_MODEL",
"audio.stt.whisper_model",
os.getenv("WHISPER_MODEL", "base"),
)
WHISPER_MODEL_DIR = os.getenv("WHISPER_MODEL_DIR", f"{CACHE_DIR}/whisper/models")
WHISPER_MODEL_AUTO_UPDATE = (
not OFFLINE_MODE
and os.environ.get("WHISPER_MODEL_AUTO_UPDATE", "").lower() == "true"
)
WHISPER_VAD_FILTER = PersistentConfig(
"WHISPER_VAD_FILTER",
"audio.stt.whisper_vad_filter",
os.getenv("WHISPER_VAD_FILTER", "False").lower() == "true",
)
WHISPER_LANGUAGE = os.getenv("WHISPER_LANGUAGE", "").lower() or None
# Add Deepgram configuration
DEEPGRAM_API_KEY = PersistentConfig(
"DEEPGRAM_API_KEY",
"audio.stt.deepgram.api_key",
os.getenv("DEEPGRAM_API_KEY", ""),
)
AUDIO_STT_OPENAI_API_BASE_URL = PersistentConfig(
"AUDIO_STT_OPENAI_API_BASE_URL",
"audio.stt.openai.api_base_url",
os.getenv("AUDIO_STT_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL),
)
AUDIO_STT_OPENAI_API_KEY = PersistentConfig(
"AUDIO_STT_OPENAI_API_KEY",
"audio.stt.openai.api_key",
os.getenv("AUDIO_STT_OPENAI_API_KEY", OPENAI_API_KEY),
)
AUDIO_STT_ENGINE = PersistentConfig(
"AUDIO_STT_ENGINE",
"audio.stt.engine",
os.getenv("AUDIO_STT_ENGINE", ""),
)
AUDIO_STT_MODEL = PersistentConfig(
"AUDIO_STT_MODEL",
"audio.stt.model",
os.getenv("AUDIO_STT_MODEL", ""),
)
AUDIO_STT_SUPPORTED_CONTENT_TYPES = PersistentConfig(
"AUDIO_STT_SUPPORTED_CONTENT_TYPES",
"audio.stt.supported_content_types",
[
content_type.strip()
for content_type in os.environ.get(
"AUDIO_STT_SUPPORTED_CONTENT_TYPES", ""
).split(",")
if content_type.strip()
],
)
AUDIO_STT_AZURE_API_KEY = PersistentConfig(
"AUDIO_STT_AZURE_API_KEY",
"audio.stt.azure.api_key",
os.getenv("AUDIO_STT_AZURE_API_KEY", ""),
)
AUDIO_STT_AZURE_REGION = PersistentConfig(
"AUDIO_STT_AZURE_REGION",
"audio.stt.azure.region",
os.getenv("AUDIO_STT_AZURE_REGION", ""),
)
AUDIO_STT_AZURE_LOCALES = PersistentConfig(
"AUDIO_STT_AZURE_LOCALES",
"audio.stt.azure.locales",
os.getenv("AUDIO_STT_AZURE_LOCALES", ""),
)
AUDIO_STT_AZURE_BASE_URL = PersistentConfig(
"AUDIO_STT_AZURE_BASE_URL",
"audio.stt.azure.base_url",
os.getenv("AUDIO_STT_AZURE_BASE_URL", ""),
)
AUDIO_STT_AZURE_MAX_SPEAKERS = PersistentConfig(
"AUDIO_STT_AZURE_MAX_SPEAKERS",
"audio.stt.azure.max_speakers",
os.getenv("AUDIO_STT_AZURE_MAX_SPEAKERS", ""),
)
AUDIO_TTS_OPENAI_API_BASE_URL = PersistentConfig(
"AUDIO_TTS_OPENAI_API_BASE_URL",
"audio.tts.openai.api_base_url",
os.getenv("AUDIO_TTS_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL),
)
AUDIO_TTS_OPENAI_API_KEY = PersistentConfig(
"AUDIO_TTS_OPENAI_API_KEY",
"audio.tts.openai.api_key",
os.getenv("AUDIO_TTS_OPENAI_API_KEY", OPENAI_API_KEY),
)
audio_tts_openai_params = os.getenv("AUDIO_TTS_OPENAI_PARAMS", "")
try:
audio_tts_openai_params = json.loads(audio_tts_openai_params)
except json.JSONDecodeError:
audio_tts_openai_params = {}
AUDIO_TTS_OPENAI_PARAMS = PersistentConfig(
"AUDIO_TTS_OPENAI_PARAMS",
"audio.tts.openai.params",
audio_tts_openai_params,
)
AUDIO_TTS_API_KEY = PersistentConfig(
"AUDIO_TTS_API_KEY",
"audio.tts.api_key",
os.getenv("AUDIO_TTS_API_KEY", ""),
)
AUDIO_TTS_ENGINE = PersistentConfig(
"AUDIO_TTS_ENGINE",
"audio.tts.engine",
os.getenv("AUDIO_TTS_ENGINE", ""),
)
AUDIO_TTS_MODEL = PersistentConfig(
"AUDIO_TTS_MODEL",
"audio.tts.model",
os.getenv("AUDIO_TTS_MODEL", "tts-1"), # OpenAI default model
)
AUDIO_TTS_VOICE = PersistentConfig(
"AUDIO_TTS_VOICE",
"audio.tts.voice",
os.getenv("AUDIO_TTS_VOICE", "alloy"), # OpenAI default voice
)
AUDIO_TTS_SPLIT_ON = PersistentConfig(
"AUDIO_TTS_SPLIT_ON",
"audio.tts.split_on",
os.getenv("AUDIO_TTS_SPLIT_ON", "punctuation"),
)
AUDIO_TTS_AZURE_SPEECH_REGION = PersistentConfig(
"AUDIO_TTS_AZURE_SPEECH_REGION",
"audio.tts.azure.speech_region",
os.getenv("AUDIO_TTS_AZURE_SPEECH_REGION", ""),
)
AUDIO_TTS_AZURE_SPEECH_BASE_URL = PersistentConfig(
"AUDIO_TTS_AZURE_SPEECH_BASE_URL",
"audio.tts.azure.speech_base_url",
os.getenv("AUDIO_TTS_AZURE_SPEECH_BASE_URL", ""),
)
AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT = PersistentConfig(
"AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT",
"audio.tts.azure.speech_output_format",
os.getenv(
"AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT", "audio-24khz-160kbitrate-mono-mp3"
),
)
####################################
# LDAP
####################################
ENABLE_LDAP = PersistentConfig(
"ENABLE_LDAP",
"ldap.enable",
os.environ.get("ENABLE_LDAP", "false").lower() == "true",
)
LDAP_SERVER_LABEL = PersistentConfig(
"LDAP_SERVER_LABEL",
"ldap.server.label",
os.environ.get("LDAP_SERVER_LABEL", "LDAP Server"),
)
LDAP_SERVER_HOST = PersistentConfig(
"LDAP_SERVER_HOST",
"ldap.server.host",
os.environ.get("LDAP_SERVER_HOST", "localhost"),
)
LDAP_SERVER_PORT = PersistentConfig(
"LDAP_SERVER_PORT",
"ldap.server.port",
int(os.environ.get("LDAP_SERVER_PORT", "389")),
)
LDAP_ATTRIBUTE_FOR_MAIL = PersistentConfig(
"LDAP_ATTRIBUTE_FOR_MAIL",
"ldap.server.attribute_for_mail",
os.environ.get("LDAP_ATTRIBUTE_FOR_MAIL", "mail"),
)
LDAP_ATTRIBUTE_FOR_USERNAME = PersistentConfig(
"LDAP_ATTRIBUTE_FOR_USERNAME",
"ldap.server.attribute_for_username",
os.environ.get("LDAP_ATTRIBUTE_FOR_USERNAME", "uid"),
)
LDAP_APP_DN = PersistentConfig(
"LDAP_APP_DN", "ldap.server.app_dn", os.environ.get("LDAP_APP_DN", "")
)
LDAP_APP_PASSWORD = PersistentConfig(
"LDAP_APP_PASSWORD",
"ldap.server.app_password",
os.environ.get("LDAP_APP_PASSWORD", ""),
)
LDAP_SEARCH_BASE = PersistentConfig(
"LDAP_SEARCH_BASE", "ldap.server.users_dn", os.environ.get("LDAP_SEARCH_BASE", "")
)
LDAP_SEARCH_FILTERS = PersistentConfig(
"LDAP_SEARCH_FILTER",
"ldap.server.search_filter",
os.environ.get("LDAP_SEARCH_FILTER", os.environ.get("LDAP_SEARCH_FILTERS", "")),
)
LDAP_USE_TLS = PersistentConfig(
"LDAP_USE_TLS",
"ldap.server.use_tls",
os.environ.get("LDAP_USE_TLS", "True").lower() == "true",
)
LDAP_CA_CERT_FILE = PersistentConfig(
"LDAP_CA_CERT_FILE",
"ldap.server.ca_cert_file",
os.environ.get("LDAP_CA_CERT_FILE", ""),
)
LDAP_VALIDATE_CERT = PersistentConfig(
"LDAP_VALIDATE_CERT",
"ldap.server.validate_cert",
os.environ.get("LDAP_VALIDATE_CERT", "True").lower() == "true",
)
LDAP_CIPHERS = PersistentConfig(
"LDAP_CIPHERS", "ldap.server.ciphers", os.environ.get("LDAP_CIPHERS", "ALL")
)
# For LDAP Group Management
ENABLE_LDAP_GROUP_MANAGEMENT = PersistentConfig(
"ENABLE_LDAP_GROUP_MANAGEMENT",
"ldap.group.enable_management",
os.environ.get("ENABLE_LDAP_GROUP_MANAGEMENT", "False").lower() == "true",
)
ENABLE_LDAP_GROUP_CREATION = PersistentConfig(
"ENABLE_LDAP_GROUP_CREATION",
"ldap.group.enable_creation",
os.environ.get("ENABLE_LDAP_GROUP_CREATION", "False").lower() == "true",
)
LDAP_ATTRIBUTE_FOR_GROUPS = PersistentConfig(
"LDAP_ATTRIBUTE_FOR_GROUPS",
"ldap.server.attribute_for_groups",
os.environ.get("LDAP_ATTRIBUTE_FOR_GROUPS", "memberOf"),
)