open-webui/Dockerfile
Swapnil Popat 632aaff608
fix: Add PYTHONUNBUFFERED=1 to Dockerfile for proper logging in containerized deployments
When Python runs in Docker containers without PYTHONUNBUFFERED=1, stdout and stderr output is buffered. If the application crashes before the buffer is flushed, critical log output is lost, making debugging and error reporting difficult.

This change ensures that Python output is unbuffered so that all logs are captured immediately, regardless of whether the application crashes or exits normally.

Fixes issue #19844
2025-12-11 19:53:06 +05:30

192 lines
7.1 KiB
Docker

# syntax=docker/dockerfile:1
# Initialize device type args
# use build args in the docker build command with --build-arg="BUILDARG=true"
ARG USE_CUDA=false
ARG USE_OLLAMA=false
ARG USE_SLIM=false
ARG USE_PERMISSION_HARDENING=false
# Tested with cu117 for CUDA 11 and cu121 for CUDA 12 (default)
ARG USE_CUDA_VER=cu128
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
# IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
ARG USE_RERANKING_MODEL=""
# Tiktoken encoding name; models to use can be found at https://huggingface.co/models?library=tiktoken
ARG USE_TIKTOKEN_ENCODING_NAME="cl100k_base"
ARG BUILD_HASH=dev-build
# Override at your own risk - non-root configurations are untested
ARG UID=0
ARG GID=0
######## WebUI frontend ########
FROM --platform=$BUILDPLATFORM node:22-alpine3.20 AS build
ARG BUILD_HASH
# Set Node.js options (heap limit Allocation failed - JavaScript heap out of memory)
# ENV NODE_OPTIONS="--max-old-space-size=4096"
WORKDIR /app
# to store git revision in build
RUN apk add --no-cache git
COPY package.json package-lock.json ./
RUN npm ci --force
COPY . .
ENV APP_BUILD_HASH=${BUILD_HASH}
RUN npm run build
######## WebUI backend ########
FROM python:3.11-slim-bookworm AS base
# Use args
ARG USE_CUDA
ARG USE_OLLAMA
ARG USE_CUDA_VER
ARG USE_SLIM
ARG USE_PERMISSION_HARDENING
ARG USE_EMBEDDING_MODEL
ARG USE_RERANKING_MODEL
ARG UID
ARG GID
## Basis ##
ENV ENV=prod \
PYTHONUNBUFFERED=1 \
PORT=8080 \
# pass build args to the build
USE_OLLAMA_DOCKER=${USE_OLLAMA} \
USE_CUDA_DOCKER=${USE_CUDA} \
USE_SLIM_DOCKER=${USE_SLIM} \
USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \
USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} \
USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL}
## Basis URL Config ##
ENV OLLAMA_BASE_URL="/ollama" \
OPENAI_API_BASE_URL=""
## API Key and Security Config ##
ENV OPENAI_API_KEY="" \
WEBUI_SECRET_KEY="" \
SCARF_NO_ANALYTICS=true \
DO_NOT_TRACK=true \
ANONYMIZED_TELEMETRY=false
#### Other models #########################################################
## whisper TTS model settings ##
ENV WHISPER_MODEL="base" \
WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
## RAG Embedding model settings ##
ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \
RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
## Tiktoken model settings ##
ENV TIKTOKEN_ENCODING_NAME="cl100k_base" \
TIKTOKEN_CACHE_DIR="/app/backend/data/cache/tiktoken"
## Hugging Face download cache ##
ENV HF_HOME="/app/backend/data/cache/embedding/models"
## Torch Extensions ##
# ENV TORCH_EXTENSIONS_DIR="/.cache/torch_extensions"
#### Other models ##########################################################
WORKDIR /app/backend
ENV HOME=/root
# Create user and group if not root
RUN if [ $UID -ne 0 ]; then \
if [ $GID -ne 0 ]; then \
addgroup --gid $GID app; \
fi; \
adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; \
fi
RUN mkdir -p $HOME/.cache/chroma
RUN echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id
# Make sure the user has access to the app and root directory
RUN chown -R $UID:$GID /app $HOME
# Install common system dependencies
RUN apt-get update && \
apt-get install -y --no-install-recommends \
git build-essential pandoc gcc netcat-openbsd curl jq \
python3-dev \
ffmpeg libsm6 libxext6 \
&& rm -rf /var/lib/apt/lists/*
# install python dependencies
COPY --chown=$UID:$GID ./backend/requirements.txt ./requirements.txt
RUN pip3 install --no-cache-dir uv && \
if [ "$USE_CUDA" = "true" ]; then \
# If you use CUDA the whisper and embedding model will be downloaded on first use
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \
else \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir && \
if [ "$USE_SLIM" != "true" ]; then \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \
fi; \
fi; \
mkdir -p /app/backend/data && chown -R $UID:$GID /app/backend/data/ && \
rm -rf /var/lib/apt/lists/*;
# Install Ollama if requested
RUN if [ "$USE_OLLAMA" = "true" ]; then \
date +%s > /tmp/ollama_build_hash && \
echo "Cache broken at timestamp: `cat /tmp/ollama_build_hash`" && \
curl -fsSL https://ollama.com/install.sh | sh && \
rm -rf /var/lib/apt/lists/*; \
fi
# copy embedding weight from build
# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
# COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
# copy built frontend files
COPY --chown=$UID:$GID --from=build /app/build /app/build
COPY --chown=$UID:$GID --from=build /app/CHANGELOG.md /app/CHANGELOG.md
COPY --chown=$UID:$GID --from=build /app/package.json /app/package.json
# copy backend files
COPY --chown=$UID:$GID ./backend .
EXPOSE 8080
HEALTHCHECK CMD curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1
# Minimal, atomic permission hardening for OpenShift (arbitrary UID):
# - Group 0 owns /app and /root
# - Directories are group-writable and have SGID so new files inherit GID 0
RUN if [ "$USE_PERMISSION_HARDENING" = "true" ]; then \
set -eux; \
chgrp -R 0 /app /root || true; \
chmod -R g+rwX /app /root || true; \
find /app -type d -exec chmod g+s {} + || true; \
find /root -type d -exec chmod g+s {} + || true; \
fi
USER $UID:$GID
ARG BUILD_HASH
ENV WEBUI_BUILD_VERSION=${BUILD_HASH}
ENV DOCKER=true
CMD [ "bash", "start.sh"]