open-webui/backend/open_webui/utils/knowledge_sync.py
2025-11-25 13:36:35 +02:00

225 lines
8.1 KiB
Python

import logging
import time
from typing import Optional
from fastapi import HTTPException, Request, status
from open_webui.internal.db import get_db
from open_webui.models.knowledge import Knowledge, Knowledges, KnowledgeModel
from open_webui.models.files import FileModel, FileMetadataResponse, Files
from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT
from open_webui.routers.retrieval import (
process_file,
ProcessFileForm,
process_files_batch,
BatchProcessFilesForm,
)
from open_webui.storage.provider import Storage
log = logging.getLogger(__name__)
def _update_knowledge_file_ids_atomic(
knowledge_id: str, remove_ids: set[str], add_ids: set[str]
) -> KnowledgeModel:
"""
Lock the knowledge row and atomically update file_ids by removing and adding
the provided sets. Prevents lost updates under concurrency.
"""
with get_db() as db:
row = (
db.query(Knowledge)
.with_for_update() # row-level lock
.filter_by(id=knowledge_id)
.first()
)
if not row:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST, detail="Knowledge not found"
)
data = dict(row.data or {})
current_ids = list(data.get("file_ids", []))
new_set = set(current_ids)
if remove_ids:
new_set.difference_update(remove_ids)
if add_ids:
new_set.update(add_ids)
data["file_ids"] = list(new_set)
db.query(Knowledge).filter_by(id=knowledge_id).update(
{"data": data, "updated_at": int(time.time())}
)
db.commit()
# Return fresh model after commit
return Knowledges.get_knowledge_by_id(knowledge_id)
def sync_files_to_knowledge(
request: Request, knowledge_id: str, new_file_ids: list[str], user
) -> tuple[KnowledgeModel, list[FileMetadataResponse], Optional[dict]]:
"""
Batch sync a list of uploaded files into a knowledge base, handling:
- skip if same-named file with identical hash already present
- replace if same-named file with different hash exists
- add if no same-named file exists
Steps:
1) Ensure each incoming file is processed to compute hash/content.
2) Compute skip/replace/add sets based on filename + hash comparison.
3) Cleanup (vectors, storage, db) for skipped new files and replaced old files.
4) Batch process embeddings for new additions (add + replace targets).
5) Atomically update knowledge.data.file_ids under a row lock.
Returns: (updated_knowledge_model, files_metadata, optional_warnings)
"""
knowledge = Knowledges.get_knowledge_by_id(id=knowledge_id)
if not knowledge:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST, detail="Knowledge not found"
)
# Deduplicate incoming list by preserving order
seen: set[str] = set()
incoming_ids: list[str] = []
for fid in new_file_ids:
if fid not in seen:
seen.add(fid)
incoming_ids.append(fid)
existing_ids = (knowledge.data or {}).get("file_ids", [])
existing_files: list[FileModel] = (
Files.get_files_by_ids(existing_ids) if existing_ids else []
)
# Build lookup by filename for existing KB files
existing_by_name: dict[str, FileModel] = {}
for f in existing_files:
if f and f.filename:
existing_by_name[f.filename] = f
to_skip_new_ids: set[str] = set() # identical by hash -> delete uploaded
to_replace_old_to_new: dict[str, str] = {} # old_id -> new_id
to_add_ids: set[str] = set()
errors: list[str] = []
# Ensure each incoming file is processed enough to have hash/content
for fid in incoming_ids:
new_file = Files.get_file_by_id(fid)
if not new_file:
errors.append(f"File {fid} not found")
continue
if not (new_file.hash and new_file.data and new_file.data.get("content")):
try:
# Process without specifying collection to generate content/hash
process_file(request, ProcessFileForm(file_id=new_file.id), user=user)
new_file = Files.get_file_by_id(new_file.id) # refresh
except Exception as e:
log.debug(e)
errors.append(f"Failed to process file {new_file.id}: {e}")
continue
same_name_file = existing_by_name.get(new_file.filename)
if same_name_file:
# If hashes match, skip (discard the new upload)
if (
same_name_file.hash
and new_file.hash
and same_name_file.hash == new_file.hash
):
to_skip_new_ids.add(new_file.id)
else:
# Hash differs -> replace old with new
to_replace_old_to_new[same_name_file.id] = new_file.id
else:
# No existing file with same name -> add
to_add_ids.add(new_file.id)
# Clean up skipped new files (remove their own vectors/collections, storage, db)
for new_id in list(to_skip_new_ids):
try:
try:
VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{new_id}")
except Exception as ve:
log.debug(ve)
new_file = Files.get_file_by_id(new_id)
if new_file and new_file.path:
try:
Storage.delete_file(new_file.path)
except Exception as se:
log.debug(se)
Files.delete_file_by_id(new_id)
except Exception as e:
log.debug(e)
errors.append(f"Failed cleanup for skipped file {new_id}: {e}")
# For replacements, remove old file's embeddings, collections, storage, and db record
for old_id, new_id in list(to_replace_old_to_new.items()):
try:
try:
VECTOR_DB_CLIENT.delete(
collection_name=knowledge_id, filter={"file_id": old_id}
)
except Exception as ve:
log.debug(ve)
try:
if VECTOR_DB_CLIENT.has_collection(
collection_name=f"file-{old_id}"
):
VECTOR_DB_CLIENT.delete_collection(
collection_name=f"file-{old_id}"
)
except Exception as ce:
log.debug(ce)
old_file = Files.get_file_by_id(old_id)
if old_file and old_file.path:
try:
Storage.delete_file(old_file.path)
except Exception as se:
log.debug(se)
Files.delete_file_by_id(old_id)
except Exception as e:
log.debug(e)
errors.append(f"Failed replace cleanup for old file {old_id}: {e}")
# Process embeddings for additions (to_add + replace targets) into KB collection
add_targets: set[str] = set(to_add_ids) | set(to_replace_old_to_new.values())
if add_targets:
add_files: list[FileModel] = Files.get_files_by_ids(list(add_targets))
try:
process_files_batch(
request=request,
form_data=BatchProcessFilesForm(
files=add_files, collection_name=knowledge_id
),
user=user,
)
except Exception as e:
log.error(f"Batch processing failed: {e}")
errors.append(f"Batch processing failed: {e}")
# Atomically update knowledge.data.file_ids under lock
updated_knowledge = _update_knowledge_file_ids_atomic(
knowledge_id=knowledge_id,
remove_ids=set(to_replace_old_to_new.keys()),
add_ids=add_targets,
)
# Prepare response files
final_ids = (updated_knowledge.data or {}).get("file_ids", [])
files_meta: list[FileMetadataResponse] = Files.get_file_metadatas_by_ids(final_ids)
warnings = None
if errors:
warnings = {
"message": "Some sync operations encountered errors",
"errors": errors,
}
return updated_knowledge, files_meta, warnings