open-webui/backend/open_webui/utils/chat.py

506 lines
17 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import logging
import sys
from aiocache import cached
from typing import Any, Optional
import random
import json
import inspect
import uuid
import asyncio
from fastapi import Request, status
from starlette.responses import Response, StreamingResponse, JSONResponse
from open_webui.models.users import UserModel
from open_webui.socket.main import (
sio,
get_event_call,
get_event_emitter,
)
from open_webui.functions import generate_function_chat_completion
from open_webui.routers.openai import (
generate_chat_completion as generate_openai_chat_completion,
)
from open_webui.routers.ollama import (
generate_chat_completion as generate_ollama_chat_completion,
)
from open_webui.routers.pipelines import (
process_pipeline_inlet_filter,
process_pipeline_outlet_filter,
)
from open_webui.models.functions import Functions
from open_webui.models.models import Models
from open_webui.utils.plugin import (
load_function_module_by_id,
get_function_module_from_cache,
)
from open_webui.utils.models import get_all_models, check_model_access
from open_webui.utils.payload import convert_payload_openai_to_ollama
from open_webui.utils.response import (
convert_response_ollama_to_openai,
convert_streaming_response_ollama_to_openai,
)
from open_webui.utils.filter import (
get_sorted_filter_ids,
process_filter_functions,
)
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL, BYPASS_MODEL_ACCESS_CONTROL
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["MAIN"])
async def generate_direct_chat_completion(
request: Request,
form_data: dict,
user: Any,
models: dict,
):
log.info("generate_direct_chat_completion")
metadata = form_data.pop("metadata", {})
user_id = metadata.get("user_id")
session_id = metadata.get("session_id")
request_id = str(uuid.uuid4()) # Generate a unique request ID
event_caller = get_event_call(metadata)
channel = f"{user_id}:{session_id}:{request_id}"
logging.info(f"WebSocket channel: {channel}")
if form_data.get("stream"):
q = asyncio.Queue()
async def message_listener(sid, data):
"""
Handle received socket messages and push them into the queue.
"""
await q.put(data)
# Register the listener
sio.on(channel, message_listener)
# Start processing chat completion in background
res = await event_caller(
{
"type": "request:chat:completion",
"data": {
"form_data": form_data,
"model": models[form_data["model"]],
"channel": channel,
"session_id": session_id,
},
}
)
log.info(f"res: {res}")
if res.get("status", False):
# Define a generator to stream responses
async def event_generator():
nonlocal q
try:
while True:
data = await q.get() # Wait for new messages
if isinstance(data, dict):
if "done" in data and data["done"]:
break # Stop streaming when 'done' is received
yield f"data: {json.dumps(data)}\n\n"
elif isinstance(data, str):
if "data:" in data:
yield f"{data}\n\n"
else:
yield f"data: {data}\n\n"
except Exception as e:
log.debug(f"Error in event generator: {e}")
pass
# Define a background task to run the event generator
async def background():
try:
del sio.handlers["/"][channel]
except Exception as e:
pass
# Return the streaming response
return StreamingResponse(
event_generator(), media_type="text/event-stream", background=background
)
else:
raise Exception(str(res))
else:
res = await event_caller(
{
"type": "request:chat:completion",
"data": {
"form_data": form_data,
"model": models[form_data["model"]],
"channel": channel,
"session_id": session_id,
},
}
)
if "error" in res and res["error"]:
raise Exception(res["error"])
return res
async def generate_chat_completion(
request: Request,
form_data: dict,
user: Any,
bypass_filter: bool = False,
chatting_completion: bool = False
):
"""
聊天完成生成函数 - 根据模型类型分发到不同的底层 API 处理器
这是聊天完成的核心路由函数,负责:
1. 验证模型存在性和用户权限
2. 处理 Direct 模式(直连外部 API
3. 处理 Arena 模式(随机选择模型进行对比)
4. 根据模型类型分发到对应处理器:
- Pipe: Pipeline 插件函数
- Ollama: Ollama 本地模型
- OpenAI: OpenAI 兼容 API (含 Claude, Gemini 等)
Args:
request: FastAPI Request 对象
form_data: OpenAI 格式的聊天请求数据
user: 用户对象
bypass_filter: 是否绕过权限和 Pipeline Filter 检查
Returns:
- 流式: StreamingResponse (SSE 格式)
- 非流式: dict (OpenAI 兼容格式)
Raises:
Exception: 模型不存在或无权限访问
"""
log.debug(f"generate_chat_completion: {form_data}")
# === 1. 权限检查配置 ===
if BYPASS_MODEL_ACCESS_CONTROL:
bypass_filter = True # 全局配置:绕过所有权限检查
# === 2. 合并元数据 ===
# 从 request.state.metadata 获取上游传递的元数据chat_id, user_id 等)
if hasattr(request.state, "metadata"):
if "metadata" not in form_data:
form_data["metadata"] = request.state.metadata
else:
# 合并request.state.metadata 优先级更高
form_data["metadata"] = {
**form_data["metadata"],
**request.state.metadata,
}
# === 3. 确定模型列表来源 ===
if getattr(request.state, "direct", False) and hasattr(request.state, "model"):
# Direct 模式:用户直接提供外部 API 配置(如 OpenAI API Key
models = {
request.state.model["id"]: request.state.model,
}
log.debug(f"direct connection to model: {models}")
else:
# 标准模式:使用平台内置模型列表
models = request.app.state.MODELS
# === 4. 验证模型存在性 ===
model_id = form_data["model"]
if model_id not in models:
raise Exception("Model not found")
model = models[model_id]
# === 5. Direct 模式分支:直连外部 API ===
if getattr(request.state, "direct", False):
return await generate_direct_chat_completion(
request, form_data, user=user, models=models
)
else:
# === 6. 标准模式:检查用户权限 ===
if not bypass_filter and user.role == "user":
try:
check_model_access(user, model) # 验证 RBAC 权限
except Exception as e:
raise e
# === 7. Arena 模式:随机选择模型进行盲测对比 ===
if False:
if model.get("owned_by") == "arena":
# 获取候选模型列表
model_ids = model.get("info", {}).get("meta", {}).get("model_ids")
filter_mode = model.get("info", {}).get("meta", {}).get("filter_mode")
# 如果是排除模式,反选模型列表
if model_ids and filter_mode == "exclude":
model_ids = [
model["id"]
for model in list(request.app.state.MODELS.values())
if model.get("owned_by") != "arena" and model["id"] not in model_ids
]
# 随机选择一个模型
selected_model_id = None
if isinstance(model_ids, list) and model_ids:
selected_model_id = random.choice(model_ids)
else:
# 未指定则从所有非 Arena 模型中随机选择
model_ids = [
model["id"]
for model in list(request.app.state.MODELS.values())
if model.get("owned_by") != "arena"
]
selected_model_id = random.choice(model_ids)
# 替换模型 ID
form_data["model"] = selected_model_id
# 流式响应:在首个 chunk 中注入 selected_model_id
if form_data.get("stream") == True:
async def stream_wrapper(stream):
"""在流式响应前添加选中的模型 ID"""
yield f"data: {json.dumps({'selected_model_id': selected_model_id})}\n\n"
async for chunk in stream:
yield chunk
# 递归调用自身,绕过 Arena 逻辑
response = await generate_chat_completion(
request, form_data, user, bypass_filter=True
)
return StreamingResponse(
stream_wrapper(response.body_iterator),
media_type="text/event-stream",
background=response.background,
)
else:
# 非流式响应:直接在结果中添加 selected_model_id
return {
**(
await generate_chat_completion(
request, form_data, user, bypass_filter=True
)
),
"selected_model_id": selected_model_id,
}
# === 8. Pipeline 模式:调用自定义 Python 函数 ===
if False:
if model.get("pipe"):
return await generate_function_chat_completion(
request, form_data, user=user, models=models
)
# === 9. Ollama 模式:调用本地 Ollama 服务 ===
if False:
if model.get("owned_by") == "ollama":
# 转换 OpenAI 格式 → Ollama 格式
form_data = convert_payload_openai_to_ollama(form_data)
response = await generate_ollama_chat_completion(
request=request,
form_data=form_data,
user=user,
bypass_filter=bypass_filter,
)
# 流式响应:转换 Ollama SSE → OpenAI SSE
if form_data.get("stream"):
response.headers["content-type"] = "text/event-stream"
return StreamingResponse(
convert_streaming_response_ollama_to_openai(response),
headers=dict(response.headers),
background=response.background,
)
else:
# 非流式响应:转换 Ollama JSON → OpenAI JSON
return convert_response_ollama_to_openai(response)
# === 10. OpenAI 兼容模式:调用 OpenAI API 或兼容服务 ===
# >>>
return await generate_openai_chat_completion(
request=request,
form_data=form_data,
user=user,
bypass_filter=bypass_filter,
chatting_completion = chatting_completion
)
chat_completion = generate_chat_completion
async def chat_completed(request: Request, form_data: dict, user: Any):
if not request.app.state.MODELS:
await get_all_models(request, user=user)
if getattr(request.state, "direct", False) and hasattr(request.state, "model"):
models = {
request.state.model["id"]: request.state.model,
}
else:
models = request.app.state.MODELS
data = form_data
model_id = data["model"]
if model_id not in models:
raise Exception("Model not found")
model = models[model_id]
try:
data = await process_pipeline_outlet_filter(request, data, user, models)
except Exception as e:
return Exception(f"Error: {e}")
metadata = {
"chat_id": data["chat_id"],
"message_id": data["id"],
"filter_ids": data.get("filter_ids", []),
"session_id": data["session_id"],
"user_id": user.id,
}
extra_params = {
"__event_emitter__": get_event_emitter(metadata),
"__event_call__": get_event_call(metadata),
"__user__": user.model_dump() if isinstance(user, UserModel) else {},
"__metadata__": metadata,
"__request__": request,
"__model__": model,
}
try:
filter_functions = [
Functions.get_function_by_id(filter_id)
for filter_id in get_sorted_filter_ids(
request, model, metadata.get("filter_ids", [])
)
]
result, _ = await process_filter_functions(
request=request,
filter_functions=filter_functions,
filter_type="outlet",
form_data=data,
extra_params=extra_params,
)
return result
except Exception as e:
return Exception(f"Error: {e}")
async def chat_action(request: Request, action_id: str, form_data: dict, user: Any):
if "." in action_id:
action_id, sub_action_id = action_id.split(".")
else:
sub_action_id = None
action = Functions.get_function_by_id(action_id)
if not action:
raise Exception(f"Action not found: {action_id}")
if not request.app.state.MODELS:
await get_all_models(request, user=user)
if getattr(request.state, "direct", False) and hasattr(request.state, "model"):
models = {
request.state.model["id"]: request.state.model,
}
else:
models = request.app.state.MODELS
data = form_data
model_id = data["model"]
if model_id not in models:
raise Exception("Model not found")
model = models[model_id]
__event_emitter__ = get_event_emitter(
{
"chat_id": data["chat_id"],
"message_id": data["id"],
"session_id": data["session_id"],
"user_id": user.id,
}
)
__event_call__ = get_event_call(
{
"chat_id": data["chat_id"],
"message_id": data["id"],
"session_id": data["session_id"],
"user_id": user.id,
}
)
function_module, _, _ = get_function_module_from_cache(request, action_id)
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"):
valves = Functions.get_function_valves_by_id(action_id)
function_module.valves = function_module.Valves(**(valves if valves else {}))
if hasattr(function_module, "action"):
try:
action = function_module.action
# Get the signature of the function
sig = inspect.signature(action)
params = {"body": data}
# Extra parameters to be passed to the function
extra_params = {
"__model__": model,
"__id__": sub_action_id if sub_action_id is not None else action_id,
"__event_emitter__": __event_emitter__,
"__event_call__": __event_call__,
"__request__": request,
}
# Add extra params in contained in function signature
for key, value in extra_params.items():
if key in sig.parameters:
params[key] = value
if "__user__" in sig.parameters:
__user__ = user.model_dump() if isinstance(user, UserModel) else {}
try:
if hasattr(function_module, "UserValves"):
__user__["valves"] = function_module.UserValves(
**Functions.get_user_valves_by_id_and_user_id(
action_id, user.id
)
)
except Exception as e:
log.exception(f"Failed to get user values: {e}")
params = {**params, "__user__": __user__}
if inspect.iscoroutinefunction(action):
data = await action(**params)
else:
data = action(**params)
except Exception as e:
return Exception(f"Error: {e}")
return data