Format python code

This commit is contained in:
Juan Calderon-Perez 2025-08-08 10:09:31 -04:00
parent 5d7e8c8e5f
commit d2f2d42e09
2 changed files with 274 additions and 219 deletions

View file

@ -64,51 +64,51 @@ log.setLevel(SRC_LOG_LEVELS["RAG"])
class Oracle23aiClient(VectorDBBase):
"""
Oracle Vector Database Client for vector similarity search using Oracle Database 23ai.
This client provides an interface to store, retrieve, and search vector embeddings
in an Oracle database. It uses connection pooling for efficient database access
and supports vector similarity search operations.
Attributes:
pool: Connection pool for Oracle database connections
"""
def __init__(self) -> None:
"""
Initialize the Oracle23aiClient with a connection pool.
Creates a connection pool with configurable min/max connections, initializes
the database schema if needed, and sets up necessary tables and indexes.
Raises:
ValueError: If required configuration parameters are missing
Exception: If database initialization fails
"""
self.pool = None
try:
# Create the appropriate connection pool based on DB type
if ORACLE_DB_USE_WALLET:
self._create_adb_pool()
else: # DBCS
self._create_dbcs_pool()
dsn = ORACLE_DB_DSN
dsn = ORACLE_DB_DSN
log.info(f"Creating Connection Pool [{ORACLE_DB_USER}:**@{dsn}]")
with self.get_connection() as connection:
log.info(f"Connection version: {connection.version}")
self._initialize_database(connection)
log.info("Oracle Vector Search initialization complete.")
except Exception as e:
log.exception(f"Error during Oracle Vector Search initialization: {e}")
raise
def _create_adb_pool(self) -> None:
"""
Create connection pool for Oracle Autonomous Database.
Uses wallet-based authentication.
"""
self.pool = oracledb.create_pool(
@ -120,14 +120,14 @@ class Oracle23aiClient(VectorDBBase):
increment=ORACLE_DB_POOL_INCREMENT,
config_dir=ORACLE_WALLET_DIR,
wallet_location=ORACLE_WALLET_DIR,
wallet_password=ORACLE_WALLET_PASSWORD
wallet_password=ORACLE_WALLET_PASSWORD,
)
log.info("Created ADB connection pool with wallet authentication.")
def _create_dbcs_pool(self) -> None:
"""
Create connection pool for Oracle Database Cloud Service.
Uses basic authentication without wallet.
"""
self.pool = oracledb.create_pool(
@ -136,10 +136,10 @@ class Oracle23aiClient(VectorDBBase):
dsn=ORACLE_DB_DSN,
min=ORACLE_DB_POOL_MIN,
max=ORACLE_DB_POOL_MAX,
increment=ORACLE_DB_POOL_INCREMENT
increment=ORACLE_DB_POOL_INCREMENT,
)
log.info("Created DB connection pool with basic authentication.")
def get_connection(self):
"""
Acquire a connection from the connection pool with retry logic.
@ -154,15 +154,17 @@ class Oracle23aiClient(VectorDBBase):
connection.outputtypehandler = self._output_type_handler
return connection
except oracledb.DatabaseError as e:
error_obj, = e.args
log.exception(f"Connection attempt {attempt + 1} failed: {error_obj.message}")
(error_obj,) = e.args
log.exception(
f"Connection attempt {attempt + 1} failed: {error_obj.message}"
)
if attempt < max_retries - 1:
wait_time = 2 ** attempt
wait_time = 2**attempt
log.info(f"Retrying in {wait_time} seconds...")
time.sleep(wait_time)
else:
raise
raise
def start_health_monitor(self, interval_seconds: int = 60):
"""
@ -171,6 +173,7 @@ class Oracle23aiClient(VectorDBBase):
Args:
interval_seconds (int): Number of seconds between health checks
"""
def _monitor():
while True:
try:
@ -191,20 +194,20 @@ class Oracle23aiClient(VectorDBBase):
"""
try:
log.info("Attempting to reinitialize the Oracle connection pool...")
# Close existing pool if it exists
if self.pool:
try:
self.pool.close()
except Exception as close_error:
log.warning(f"Error closing existing pool: {close_error}")
# Re-create the appropriate connection pool based on DB type
if ORACLE_DB_USE_WALLET:
self._create_adb_pool()
else: # DBCS
self._create_dbcs_pool()
log.info("Connection pool reinitialized.")
except Exception as e:
log.exception(f"Failed to reinitialize the connection pool: {e}")
@ -219,40 +222,44 @@ class Oracle23aiClient(VectorDBBase):
with connection.cursor() as cursor:
cursor.execute("SELECT 1 FROM dual")
except Exception as e:
log.exception(f"Connection check failed: {e}, attempting to reconnect pool...")
log.exception(
f"Connection check failed: {e}, attempting to reconnect pool..."
)
self._reconnect_pool()
def _output_type_handler(self, cursor, metadata):
"""
Handle Oracle vector type conversion.
Args:
cursor: Oracle database cursor
metadata: Metadata for the column
Returns:
A variable with appropriate conversion for vector types
"""
if metadata.type_code is oracledb.DB_TYPE_VECTOR:
return cursor.var(metadata.type_code, arraysize=cursor.arraysize,
outconverter=list)
return cursor.var(
metadata.type_code, arraysize=cursor.arraysize, outconverter=list
)
def _initialize_database(self, connection) -> None:
"""
Initialize database schema, tables and indexes.
Creates the document_chunk table and necessary indexes if they don't exist.
Args:
connection: Oracle database connection
Raises:
Exception: If schema initialization fails
"""
with connection.cursor() as cursor:
try:
log.info("Creating Table document_chunk")
cursor.execute("""
cursor.execute(
"""
BEGIN
EXECUTE IMMEDIATE '
CREATE TABLE IF NOT EXISTS document_chunk (
@ -269,10 +276,12 @@ class Oracle23aiClient(VectorDBBase):
RAISE;
END IF;
END;
""")
"""
)
log.info("Creating Index document_chunk_collection_name_idx")
cursor.execute("""
cursor.execute(
"""
BEGIN
EXECUTE IMMEDIATE '
CREATE INDEX IF NOT EXISTS document_chunk_collection_name_idx
@ -284,10 +293,12 @@ class Oracle23aiClient(VectorDBBase):
RAISE;
END IF;
END;
""")
"""
)
log.info("Creating VECTOR INDEX document_chunk_vector_ivf_idx")
cursor.execute("""
cursor.execute(
"""
BEGIN
EXECUTE IMMEDIATE '
CREATE VECTOR INDEX IF NOT EXISTS document_chunk_vector_ivf_idx
@ -303,11 +314,12 @@ class Oracle23aiClient(VectorDBBase):
RAISE;
END IF;
END;
""")
"""
)
connection.commit()
log.info("Database initialization completed successfully.")
except Exception as e:
connection.rollback()
log.exception(f"Error during database initialization: {e}")
@ -316,7 +328,7 @@ class Oracle23aiClient(VectorDBBase):
def check_vector_length(self) -> None:
"""
Check vector length compatibility (placeholder).
This method would check if the configured vector length matches the database schema.
Currently implemented as a placeholder.
"""
@ -325,10 +337,10 @@ class Oracle23aiClient(VectorDBBase):
def _vector_to_blob(self, vector: List[float]) -> bytes:
"""
Convert a vector to Oracle BLOB format.
Args:
vector (List[float]): The vector to convert
Returns:
bytes: The vector in Oracle BLOB format
"""
@ -337,25 +349,25 @@ class Oracle23aiClient(VectorDBBase):
def adjust_vector_length(self, vector: List[float]) -> List[float]:
"""
Adjust vector to the expected length if needed.
Args:
vector (List[float]): The vector to adjust
Returns:
List[float]: The adjusted vector
"""
return vector
def _decimal_handler(self, obj):
"""
Handle Decimal objects for JSON serialization.
Args:
obj: Object to serialize
Returns:
float: Converted decimal value
Raises:
TypeError: If object is not JSON serializable
"""
@ -366,10 +378,10 @@ class Oracle23aiClient(VectorDBBase):
def _metadata_to_json(self, metadata: Dict) -> str:
"""
Convert metadata dictionary to JSON string.
Args:
metadata (Dict): Metadata dictionary
Returns:
str: JSON representation of metadata
"""
@ -378,10 +390,10 @@ class Oracle23aiClient(VectorDBBase):
def _json_to_metadata(self, json_str: str) -> Dict:
"""
Convert JSON string to metadata dictionary.
Args:
json_str (str): JSON string
Returns:
Dict: Metadata dictionary
"""
@ -390,14 +402,14 @@ class Oracle23aiClient(VectorDBBase):
def insert(self, collection_name: str, items: List[VectorItem]) -> None:
"""
Insert vector items into the database.
Args:
collection_name (str): Name of the collection
items (List[VectorItem]): List of vector items to insert
Raises:
Exception: If insertion fails
Example:
>>> client = Oracle23aiClient()
>>> items = [
@ -407,28 +419,33 @@ class Oracle23aiClient(VectorDBBase):
>>> client.insert("my_collection", items)
"""
log.info(f"Inserting {len(items)} items into collection '{collection_name}'.")
with self.get_connection() as connection:
try:
with connection.cursor() as cursor:
for item in items:
vector_blob = self._vector_to_blob(item["vector"])
metadata_json = self._metadata_to_json(item["metadata"])
cursor.execute("""
cursor.execute(
"""
INSERT INTO document_chunk
(id, collection_name, text, vmetadata, vector)
VALUES (:id, :collection_name, :text, :metadata, :vector)
""", {
'id': item["id"],
'collection_name': collection_name,
'text': item["text"],
'metadata': metadata_json,
'vector': vector_blob
})
""",
{
"id": item["id"],
"collection_name": collection_name,
"text": item["text"],
"metadata": metadata_json,
"vector": vector_blob,
},
)
connection.commit()
log.info(f"Successfully inserted {len(items)} items into collection '{collection_name}'.")
log.info(
f"Successfully inserted {len(items)} items into collection '{collection_name}'."
)
except Exception as e:
connection.rollback()
@ -438,14 +455,14 @@ class Oracle23aiClient(VectorDBBase):
def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
"""
Update or insert vector items into the database.
If an item with the same ID exists, it will be updated;
otherwise, it will be inserted.
Args:
collection_name (str): Name of the collection
items (List[VectorItem]): List of vector items to upsert
Raises:
Exception: If upsert operation fails
@ -465,8 +482,9 @@ class Oracle23aiClient(VectorDBBase):
for item in items:
vector_blob = self._vector_to_blob(item["vector"])
metadata_json = self._metadata_to_json(item["metadata"])
cursor.execute("""
cursor.execute(
"""
MERGE INTO document_chunk d
USING (SELECT :merge_id as id FROM dual) s
ON (d.id = s.id)
@ -479,21 +497,25 @@ class Oracle23aiClient(VectorDBBase):
WHEN NOT MATCHED THEN
INSERT (id, collection_name, text, vmetadata, vector)
VALUES (:ins_id, :ins_collection_name, :ins_text, :ins_metadata, :ins_vector)
""", {
'merge_id': item["id"],
'upd_collection_name': collection_name,
'upd_text': item["text"],
'upd_metadata': metadata_json,
'upd_vector': vector_blob,
'ins_id': item["id"],
'ins_collection_name': collection_name,
'ins_text': item["text"],
'ins_metadata': metadata_json,
'ins_vector': vector_blob
})
""",
{
"merge_id": item["id"],
"upd_collection_name": collection_name,
"upd_text": item["text"],
"upd_metadata": metadata_json,
"upd_vector": vector_blob,
"ins_id": item["id"],
"ins_collection_name": collection_name,
"ins_text": item["text"],
"ins_metadata": metadata_json,
"ins_vector": vector_blob,
},
)
connection.commit()
log.info(f"Successfully upserted {len(items)} items into collection '{collection_name}'.")
log.info(
f"Successfully upserted {len(items)} items into collection '{collection_name}'."
)
except Exception as e:
connection.rollback()
@ -501,24 +523,21 @@ class Oracle23aiClient(VectorDBBase):
raise
def search(
self,
collection_name: str,
vectors: List[List[Union[float, int]]],
limit: int
self, collection_name: str, vectors: List[List[Union[float, int]]], limit: int
) -> Optional[SearchResult]:
"""
Search for similar vectors in the database.
Performs vector similarity search using cosine distance.
Args:
collection_name (str): Name of the collection to search
vectors (List[List[Union[float, int]]]): Query vectors to find similar items for
limit (int): Maximum number of results to return per query
Returns:
Optional[SearchResult]: Search results containing ids, distances, documents, and metadata
Example:
>>> client = Oracle23aiClient()
>>> query_vector = [0.1, 0.2, 0.3, ...] # Must match VECTOR_LENGTH
@ -528,26 +547,29 @@ class Oracle23aiClient(VectorDBBase):
... for i, (id, dist) in enumerate(zip(results.ids[0], results.distances[0])):
... log.info(f"Match {i+1}: id={id}, distance={dist}")
"""
log.info(f"Searching items from collection '{collection_name}' with limit {limit}.")
log.info(
f"Searching items from collection '{collection_name}' with limit {limit}."
)
try:
if not vectors:
log.warning("No vectors provided for search.")
return None
num_queries = len(vectors)
ids = [[] for _ in range(num_queries)]
distances = [[] for _ in range(num_queries)]
documents = [[] for _ in range(num_queries)]
metadatas = [[] for _ in range(num_queries)]
with self.get_connection() as connection:
with connection.cursor() as cursor:
for qid, vector in enumerate(vectors):
vector_blob = self._vector_to_blob(vector)
cursor.execute("""
cursor.execute(
"""
SELECT dc.id, dc.text,
JSON_SERIALIZE(dc.vmetadata RETURNING VARCHAR2(4096)) as vmetadata,
VECTOR_DISTANCE(dc.vector, :query_vector, COSINE) as distance
@ -555,54 +577,60 @@ class Oracle23aiClient(VectorDBBase):
WHERE dc.collection_name = :collection_name
ORDER BY VECTOR_DISTANCE(dc.vector, :query_vector, COSINE)
FETCH APPROX FIRST :limit ROWS ONLY
""", {
'query_vector': vector_blob,
'collection_name': collection_name,
'limit': limit
})
""",
{
"query_vector": vector_blob,
"collection_name": collection_name,
"limit": limit,
},
)
results = cursor.fetchall()
for row in results:
ids[qid].append(row[0])
documents[qid].append(row[1].read() if isinstance(row[1], oracledb.LOB) else str(row[1]))
documents[qid].append(
row[1].read()
if isinstance(row[1], oracledb.LOB)
else str(row[1])
)
# 🔧 FIXED: Parse JSON metadata properly
metadata_str = row[2].read() if isinstance(row[2], oracledb.LOB) else row[2]
metadata_str = (
row[2].read()
if isinstance(row[2], oracledb.LOB)
else row[2]
)
metadatas[qid].append(self._json_to_metadata(metadata_str))
distances[qid].append(float(row[3]))
log.info(f"Search completed. Found {sum(len(ids[i]) for i in range(num_queries))} total results.")
log.info(
f"Search completed. Found {sum(len(ids[i]) for i in range(num_queries))} total results."
)
return SearchResult(
ids=ids,
distances=distances,
documents=documents,
metadatas=metadatas
ids=ids, distances=distances, documents=documents, metadatas=metadatas
)
except Exception as e:
log.exception(f"Error during search: {e}")
return None
def query(
self,
collection_name: str,
filter: Dict,
limit: Optional[int] = None
self, collection_name: str, filter: Dict, limit: Optional[int] = None
) -> Optional[GetResult]:
"""
Query items based on metadata filters.
Retrieves items that match specified metadata criteria.
Args:
collection_name (str): Name of the collection to query
filter (Dict[str, Any]): Metadata filters to apply
limit (Optional[int]): Maximum number of results to return
Returns:
Optional[GetResult]: Query results containing ids, documents, and metadata
Example:
>>> client = Oracle23aiClient()
>>> filter = {"source": "doc1", "category": "finance"}
@ -611,107 +639,122 @@ class Oracle23aiClient(VectorDBBase):
... print(f"Found {len(results.ids[0])} matching documents")
"""
log.info(f"Querying items from collection '{collection_name}' with filters.")
try:
limit = limit or 100
query = """
SELECT id, text, JSON_SERIALIZE(vmetadata RETURNING VARCHAR2(4096)) as vmetadata
FROM document_chunk
WHERE collection_name = :collection_name
"""
params = {'collection_name': collection_name}
params = {"collection_name": collection_name}
for i, (key, value) in enumerate(filter.items()):
param_name = f"value_{i}"
query += f" AND JSON_VALUE(vmetadata, '$.{key}' RETURNING VARCHAR2(4096)) = :{param_name}"
params[param_name] = str(value)
query += " FETCH FIRST :limit ROWS ONLY"
params['limit'] = limit
params["limit"] = limit
with self.get_connection() as connection:
with connection.cursor() as cursor:
cursor.execute(query, params)
results = cursor.fetchall()
if not results:
log.info("No results found for query.")
return None
ids = [[row[0] for row in results]]
documents = [[row[1].read() if isinstance(row[1], oracledb.LOB) else str(row[1]) for row in results]]
documents = [
[
row[1].read() if isinstance(row[1], oracledb.LOB) else str(row[1])
for row in results
]
]
# 🔧 FIXED: Parse JSON metadata properly
metadatas = [[self._json_to_metadata(row[2].read() if isinstance(row[2], oracledb.LOB) else row[2]) for row in results]]
metadatas = [
[
self._json_to_metadata(
row[2].read() if isinstance(row[2], oracledb.LOB) else row[2]
)
for row in results
]
]
log.info(f"Query completed. Found {len(results)} results.")
return GetResult(
ids=ids,
documents=documents,
metadatas=metadatas
)
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
except Exception as e:
log.exception(f"Error during query: {e}")
return None
def get(
self,
collection_name: str
) -> Optional[GetResult]:
def get(self, collection_name: str) -> Optional[GetResult]:
"""
Get all items in a collection.
Retrieves items from a specified collection up to the limit.
Args:
collection_name (str): Name of the collection to retrieve
limit (Optional[int]): Maximum number of items to retrieve
Returns:
Optional[GetResult]: Result containing ids, documents, and metadata
Example:
>>> client = Oracle23aiClient()
>>> results = client.get("my_collection", limit=50)
>>> if results:
... print(f"Retrieved {len(results.ids[0])} documents from collection")
"""
log.info(f"Getting items from collection '{collection_name}' with limit {limit}.")
log.info(
f"Getting items from collection '{collection_name}' with limit {limit}."
)
try:
limit = limit or 1000
with self.get_connection() as connection:
with connection.cursor() as cursor:
cursor.execute("""
cursor.execute(
"""
SELECT /*+ MONITOR */ id, text, JSON_SERIALIZE(vmetadata RETURNING VARCHAR2(4096)) as vmetadata
FROM document_chunk
WHERE collection_name = :collection_name
FETCH FIRST :limit ROWS ONLY
""", {
'collection_name': collection_name,
'limit': limit
})
""",
{"collection_name": collection_name, "limit": limit},
)
results = cursor.fetchall()
if not results:
log.info("No results found.")
return None
ids = [[row[0] for row in results]]
documents = [[row[1].read() if isinstance(row[1], oracledb.LOB) else str(row[1]) for row in results]]
documents = [
[
row[1].read() if isinstance(row[1], oracledb.LOB) else str(row[1])
for row in results
]
]
# 🔧 FIXED: Parse JSON metadata properly
metadatas = [[self._json_to_metadata(row[2].read() if isinstance(row[2], oracledb.LOB) else row[2]) for row in results]]
return GetResult(
ids=ids,
documents=documents,
metadatas=metadatas
)
metadatas = [
[
self._json_to_metadata(
row[2].read() if isinstance(row[2], oracledb.LOB) else row[2]
)
for row in results
]
]
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
except Exception as e:
log.exception(f"Error during get: {e}")
@ -725,17 +768,17 @@ class Oracle23aiClient(VectorDBBase):
) -> None:
"""
Delete items from the database.
Deletes items from a collection based on IDs or metadata filters.
Args:
collection_name (str): Name of the collection to delete from
ids (Optional[List[str]]): Specific item IDs to delete
filter (Optional[Dict[str, Any]]): Metadata filters for deletion
Raises:
Exception: If deletion fails
Example:
>>> client = Oracle23aiClient()
>>> # Delete specific items by ID
@ -744,32 +787,34 @@ class Oracle23aiClient(VectorDBBase):
>>> client.delete("my_collection", filter={"source": "deprecated_source"})
"""
log.info(f"Deleting items from collection '{collection_name}'.")
try:
query = "DELETE FROM document_chunk WHERE collection_name = :collection_name"
params = {'collection_name': collection_name}
query = (
"DELETE FROM document_chunk WHERE collection_name = :collection_name"
)
params = {"collection_name": collection_name}
if ids:
# 🔧 FIXED: Use proper parameterized query to prevent SQL injection
placeholders = ','.join([f':id_{i}' for i in range(len(ids))])
placeholders = ",".join([f":id_{i}" for i in range(len(ids))])
query += f" AND id IN ({placeholders})"
for i, id_val in enumerate(ids):
params[f'id_{i}'] = id_val
params[f"id_{i}"] = id_val
if filter:
for i, (key, value) in enumerate(filter.items()):
param_name = f"value_{i}"
query += f" AND JSON_VALUE(vmetadata, '$.{key}' RETURNING VARCHAR2(4096)) = :{param_name}"
params[param_name] = str(value)
with self.get_connection() as connection:
with connection.cursor() as cursor:
cursor.execute(query, params)
deleted = cursor.rowcount
connection.commit()
log.info(f"Deleted {deleted} items from collection '{collection_name}'.")
except Exception as e:
log.exception(f"Error during delete: {e}")
raise
@ -777,26 +822,28 @@ class Oracle23aiClient(VectorDBBase):
def reset(self) -> None:
"""
Reset the database by deleting all items.
Deletes all items from the document_chunk table.
Raises:
Exception: If reset fails
Example:
>>> client = Oracle23aiClient()
>>> client.reset() # Warning: Removes all data!
"""
log.info("Resetting database - deleting all items.")
try:
with self.get_connection() as connection:
with connection.cursor() as cursor:
cursor.execute("DELETE FROM document_chunk")
deleted = cursor.rowcount
connection.commit()
log.info(f"Reset complete. Deleted {deleted} items from 'document_chunk' table.")
log.info(
f"Reset complete. Deleted {deleted} items from 'document_chunk' table."
)
except Exception as e:
log.exception(f"Error during reset: {e}")
@ -805,16 +852,16 @@ class Oracle23aiClient(VectorDBBase):
def close(self) -> None:
"""
Close the database connection pool.
Properly closes the connection pool and releases all resources.
Example:
>>> client = Oracle23aiClient()
>>> # After finishing all operations
>>> client.close()
"""
try:
if hasattr(self, 'pool') and self.pool:
if hasattr(self, "pool") and self.pool:
self.pool.close()
log.info("Oracle Vector Search connection pool closed.")
except Exception as e:
@ -823,13 +870,13 @@ class Oracle23aiClient(VectorDBBase):
def has_collection(self, collection_name: str) -> bool:
"""
Check if a collection exists.
Args:
collection_name (str): Name of the collection to check
Returns:
bool: True if the collection exists, False otherwise
Example:
>>> client = Oracle23aiClient()
>>> if client.has_collection("my_collection"):
@ -840,17 +887,20 @@ class Oracle23aiClient(VectorDBBase):
try:
with self.get_connection() as connection:
with connection.cursor() as cursor:
cursor.execute("""
cursor.execute(
"""
SELECT COUNT(*)
FROM document_chunk
WHERE collection_name = :collection_name
FETCH FIRST 1 ROWS ONLY
""", {'collection_name': collection_name})
""",
{"collection_name": collection_name},
)
count = cursor.fetchone()[0]
return count > 0
except Exception as e:
log.exception(f"Error checking collection existence: {e}")
return False
@ -858,31 +908,36 @@ class Oracle23aiClient(VectorDBBase):
def delete_collection(self, collection_name: str) -> None:
"""
Delete an entire collection.
Removes all items belonging to the specified collection.
Args:
collection_name (str): Name of the collection to delete
Example:
>>> client = Oracle23aiClient()
>>> client.delete_collection("obsolete_collection")
"""
log.info(f"Deleting collection '{collection_name}'.")
try:
with self.get_connection() as connection:
with connection.cursor() as cursor:
cursor.execute("""
cursor.execute(
"""
DELETE FROM document_chunk
WHERE collection_name = :collection_name
""", {'collection_name': collection_name})
""",
{"collection_name": collection_name},
)
deleted = cursor.rowcount
connection.commit()
log.info(f"Collection '{collection_name}' deleted. Removed {deleted} items.")
log.info(
f"Collection '{collection_name}' deleted. Removed {deleted} items."
)
except Exception as e:
log.exception(f"Error deleting collection '{collection_name}': {e}")
raise
raise

View file

@ -402,11 +402,11 @@ def convert_openapi_to_tool_payload(openapi_spec):
"type": param_schema.get("type"),
"description": description,
}
# Include items property for array types (required by OpenAI)
if param_schema.get("type") == "array" and "items" in param_schema:
param_property["items"] = param_schema["items"]
tool["parameters"]["properties"][param_name] = param_property
if param.get("required"):
tool["parameters"]["required"].append(param_name)