feat: add support for Weaviate vector database (#14747)

This commit is contained in:
Diwakar 2025-11-21 07:23:46 +07:00 committed by GitHub
parent 7be750bcbb
commit b8728064d8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 312 additions and 0 deletions

View file

@ -2180,6 +2180,11 @@ ENABLE_QDRANT_MULTITENANCY_MODE = (
)
QDRANT_COLLECTION_PREFIX = os.environ.get("QDRANT_COLLECTION_PREFIX", "open-webui")
WEAVIATE_HTTP_HOST = os.environ.get("WEAVIATE_HTTP_HOST", "")
WEAVIATE_HTTP_PORT = int(os.environ.get("WEAVIATE_HTTP_PORT", "8080"))
WEAVIATE_GRPC_PORT = int(os.environ.get("WEAVIATE_GRPC_PORT", "50051"))
WEAVIATE_API_KEY = os.environ.get("WEAVIATE_API_KEY")
# OpenSearch
OPENSEARCH_URI = os.environ.get("OPENSEARCH_URI", "https://localhost:9200")
OPENSEARCH_SSL = os.environ.get("OPENSEARCH_SSL", "true").lower() == "true"

View file

@ -0,0 +1,301 @@
import weaviate
import re
import uuid
from typing import Any, Dict, List, Optional, Union
from open_webui.retrieval.vector.main import (
VectorDBBase,
VectorItem,
SearchResult,
GetResult,
)
from open_webui.retrieval.vector.utils import process_metadata
from open_webui.config import WEAVIATE_HTTP_HOST, WEAVIATE_HTTP_PORT, WEAVIATE_GRPC_PORT, WEAVIATE_API_KEY
def _convert_uuids_to_strings(obj: Any) -> Any:
"""
Recursively convert UUID objects to strings in nested data structures.
This function handles:
- UUID objects -> string
- Dictionaries with UUID values
- Lists/Tuples with UUID values
- Nested combinations of the above
Args:
obj: Any object that might contain UUIDs
Returns:
The same object structure with UUIDs converted to strings
"""
if isinstance(obj, uuid.UUID):
return str(obj)
elif isinstance(obj, dict):
return {key: _convert_uuids_to_strings(value) for key, value in obj.items()}
elif isinstance(obj, (list, tuple)):
return type(obj)(_convert_uuids_to_strings(item) for item in obj)
elif isinstance(obj, (str, int, float, bool, type(None))):
return obj
else:
return obj
class WeaviateClient(VectorDBBase):
def __init__(self):
self.url = WEAVIATE_HTTP_HOST
try:
# Build connection parameters
connection_params = {
"host": WEAVIATE_HTTP_HOST,
"port": WEAVIATE_HTTP_PORT,
"grpc_port": WEAVIATE_GRPC_PORT,
}
# Only add auth_credentials if WEAVIATE_API_KEY exists and is not empty
if WEAVIATE_API_KEY:
connection_params["auth_credentials"] = weaviate.classes.init.Auth.api_key(WEAVIATE_API_KEY)
self.client = weaviate.connect_to_local(**connection_params)
self.client.connect()
except Exception as e:
raise ConnectionError(f"Failed to connect to Weaviate: {e}") from e
def _sanitize_collection_name(self, collection_name: str) -> str:
"""Sanitize collection name to be a valid Weaviate class name."""
if not isinstance(collection_name, str) or not collection_name.strip():
raise ValueError("Collection name must be a non-empty string")
# Requirements for a valid Weaviate class name:
# The collection name must begin with a capital letter.
# The name can only contain letters, numbers, and the underscore (_) character. Spaces are not allowed.
# Replace hyphens with underscores and keep only alphanumeric characters
name = re.sub(r'[^a-zA-Z0-9_]', '', collection_name.replace("-", "_"))
name = name.strip("_")
if not name:
raise ValueError("Could not sanitize collection name to be a valid Weaviate class name")
# Ensure it starts with a letter and is capitalized
if not name[0].isalpha():
name = "C" + name
return name[0].upper() + name[1:]
def has_collection(self, collection_name: str) -> bool:
sane_collection_name = self._sanitize_collection_name(collection_name)
return self.client.collections.exists(sane_collection_name)
def delete_collection(self, collection_name: str) -> None:
sane_collection_name = self._sanitize_collection_name(collection_name)
if self.client.collections.exists(sane_collection_name):
self.client.collections.delete(sane_collection_name)
def _create_collection(self, collection_name: str) -> None:
self.client.collections.create(
name=collection_name,
vector_config=weaviate.classes.config.Configure.Vectors.self_provided(),
properties=[
weaviate.classes.config.Property(name="text", data_type=weaviate.classes.config.DataType.TEXT),
]
)
def insert(self, collection_name: str, items: List[VectorItem]) -> None:
sane_collection_name = self._sanitize_collection_name(collection_name)
if not self.client.collections.exists(sane_collection_name):
self._create_collection(sane_collection_name)
collection = self.client.collections.get(sane_collection_name)
with collection.batch.fixed_size(batch_size=100) as batch:
for item in items:
item_uuid = str(uuid.uuid4()) if not item["id"] else str(item["id"])
properties = {"text": item["text"]}
if item["metadata"]:
clean_metadata = _convert_uuids_to_strings(process_metadata(item["metadata"]))
clean_metadata.pop("text", None)
properties.update(clean_metadata)
batch.add_object(
properties=properties,
uuid=item_uuid,
vector=item["vector"]
)
def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
sane_collection_name = self._sanitize_collection_name(collection_name)
if not self.client.collections.exists(sane_collection_name):
self._create_collection(sane_collection_name)
collection = self.client.collections.get(sane_collection_name)
with collection.batch.fixed_size(batch_size=100) as batch:
for item in items:
item_uuid = str(item["id"]) if item["id"] else None
properties = {"text": item["text"]}
if item["metadata"]:
clean_metadata = _convert_uuids_to_strings(process_metadata(item["metadata"]))
clean_metadata.pop("text", None)
properties.update(clean_metadata)
batch.add_object(
properties=properties,
uuid=item_uuid,
vector=item["vector"]
)
def search(
self, collection_name: str, vectors: List[List[Union[float, int]]], limit: int
) -> Optional[SearchResult]:
sane_collection_name = self._sanitize_collection_name(collection_name)
if not self.client.collections.exists(sane_collection_name):
return None
collection = self.client.collections.get(sane_collection_name)
result_ids, result_documents, result_metadatas, result_distances = [], [], [], []
for vector_embedding in vectors:
try:
response = collection.query.near_vector(
near_vector=vector_embedding,
limit=limit,
return_metadata=weaviate.classes.query.MetadataQuery(distance=True),
)
ids = [str(obj.uuid) for obj in response.objects]
documents = []
metadatas = []
distances = []
for obj in response.objects:
properties = dict(obj.properties) if obj.properties else {}
documents.append(properties.pop("text", ""))
metadatas.append(_convert_uuids_to_strings(properties))
# Weaviate has cosine distance, 2 (worst) -> 0 (best). Re-ordering to 0 -> 1
raw_distances = [obj.metadata.distance if obj.metadata and obj.metadata.distance else 2.0 for obj in response.objects]
distances = [(2 - dist) / 2 for dist in raw_distances]
result_ids.append(ids)
result_documents.append(documents)
result_metadatas.append(metadatas)
result_distances.append(distances)
except Exception:
result_ids.append([])
result_documents.append([])
result_metadatas.append([])
result_distances.append([])
return SearchResult(
**{
"ids": result_ids,
"documents": result_documents,
"metadatas": result_metadatas,
"distances": result_distances,
}
)
def query(
self, collection_name: str, filter: Dict, limit: Optional[int] = None
) -> Optional[GetResult]:
sane_collection_name = self._sanitize_collection_name(collection_name)
if not self.client.collections.exists(sane_collection_name):
return None
collection = self.client.collections.get(sane_collection_name)
weaviate_filter = None
if filter:
for key, value in filter.items():
prop_filter = weaviate.classes.query.Filter.by_property(name=key).equal(value)
weaviate_filter = prop_filter if weaviate_filter is None else weaviate.classes.query.Filter.all_of([weaviate_filter, prop_filter])
try:
response = collection.query.fetch_objects(filters=weaviate_filter, limit=limit)
ids = [str(obj.uuid) for obj in response.objects]
documents = []
metadatas = []
for obj in response.objects:
properties = dict(obj.properties) if obj.properties else {}
documents.append(properties.pop("text", ""))
metadatas.append(_convert_uuids_to_strings(properties))
return GetResult(
**{
"ids": [ids],
"documents": [documents],
"metadatas": [metadatas],
}
)
except Exception:
return None
def get(self, collection_name: str) -> Optional[GetResult]:
sane_collection_name = self._sanitize_collection_name(collection_name)
if not self.client.collections.exists(sane_collection_name):
return None
collection = self.client.collections.get(sane_collection_name)
ids, documents, metadatas = [], [], []
try:
for item in collection.iterator():
ids.append(str(item.uuid))
properties = dict(item.properties) if item.properties else {}
documents.append(properties.pop("text", ""))
metadatas.append(_convert_uuids_to_strings(properties))
if not ids:
return None
return GetResult(
**{
"ids": [ids],
"documents": [documents],
"metadatas": [metadatas],
}
)
except Exception:
return None
def delete(
self,
collection_name: str,
ids: Optional[List[str]] = None,
filter: Optional[Dict] = None,
) -> None:
sane_collection_name = self._sanitize_collection_name(collection_name)
if not self.client.collections.exists(sane_collection_name):
return
collection = self.client.collections.get(sane_collection_name)
try:
if ids:
for item_id in ids:
collection.data.delete_by_id(uuid=item_id)
elif filter:
weaviate_filter = None
for key, value in filter.items():
prop_filter = weaviate.classes.query.Filter.by_property(name=key).equal(value)
weaviate_filter = prop_filter if weaviate_filter is None else weaviate.classes.query.Filter.all_of([weaviate_filter, prop_filter])
if weaviate_filter:
collection.data.delete_many(where=weaviate_filter)
except Exception:
pass
def reset(self) -> None:
try:
for collection_name in self.client.collections.list_all().keys():
self.client.collections.delete(collection_name)
except Exception:
pass

View file

@ -67,6 +67,10 @@ class Vector:
from open_webui.retrieval.vector.dbs.oracle23ai import Oracle23aiClient
return Oracle23aiClient()
case VectorType.WEAVIATE:
from open_webui.retrieval.vector.dbs.weaviate import WeaviateClient
return WeaviateClient()
case _:
raise ValueError(f"Unsupported vector type: {vector_type}")

View file

@ -11,3 +11,4 @@ class VectorType(StrEnum):
PGVECTOR = "pgvector"
ORACLE23AI = "oracle23ai"
S3VECTOR = "s3vector"
WEAVIATE = "weaviate"

View file

@ -49,6 +49,7 @@ langchain-community==0.3.29
fake-useragent==2.2.0
chromadb==1.1.0
weaviate-client==4.17.0
opensearch-py==2.8.0
transformers