feat/enh: async embedding processing setting

Co-Authored-By: Classic298 <27028174+Classic298@users.noreply.github.com>
This commit is contained in:
Timothy Jaeryang Baek 2025-11-25 01:55:43 -05:00
parent b1c1e68e56
commit 2328dc284e
5 changed files with 57 additions and 9 deletions

View file

@ -2713,6 +2713,12 @@ RAG_EMBEDDING_BATCH_SIZE = PersistentConfig(
),
)
ENABLE_ASYNC_EMBEDDING = PersistentConfig(
"ENABLE_ASYNC_EMBEDDING",
"rag.enable_async_embedding",
os.environ.get("ENABLE_ASYNC_EMBEDDING", "True").lower() == "true",
)
RAG_EMBEDDING_QUERY_PREFIX = os.environ.get("RAG_EMBEDDING_QUERY_PREFIX", None)
RAG_EMBEDDING_CONTENT_PREFIX = os.environ.get("RAG_EMBEDDING_CONTENT_PREFIX", None)

View file

@ -230,6 +230,7 @@ from open_webui.config import (
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
RAG_EMBEDDING_ENGINE,
RAG_EMBEDDING_BATCH_SIZE,
ENABLE_ASYNC_EMBEDDING,
RAG_TOP_K,
RAG_TOP_K_RERANKER,
RAG_RELEVANCE_THRESHOLD,
@ -884,6 +885,7 @@ app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP
app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
app.state.config.RAG_EMBEDDING_BATCH_SIZE = RAG_EMBEDDING_BATCH_SIZE
app.state.config.ENABLE_ASYNC_EMBEDDING = ENABLE_ASYNC_EMBEDDING
app.state.config.RAG_RERANKING_ENGINE = RAG_RERANKING_ENGINE
app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL

View file

@ -782,6 +782,7 @@ def get_embedding_function(
key,
embedding_batch_size,
azure_api_version=None,
enable_async=True,
) -> Awaitable:
if embedding_engine == "":
# Sentence transformers: CPU-bound sync operation
@ -816,16 +817,26 @@ def get_embedding_function(
query[i : i + embedding_batch_size]
for i in range(0, len(query), embedding_batch_size)
]
log.debug(
f"generate_multiple_async: Processing {len(batches)} batches in parallel"
)
# Execute all batches in parallel
tasks = [
embedding_function(batch, prefix=prefix, user=user)
for batch in batches
]
batch_results = await asyncio.gather(*tasks)
if enable_async:
log.debug(
f"generate_multiple_async: Processing {len(batches)} batches in parallel"
)
# Execute all batches in parallel
tasks = [
embedding_function(batch, prefix=prefix, user=user)
for batch in batches
]
batch_results = await asyncio.gather(*tasks)
else:
log.debug(
f"generate_multiple_async: Processing {len(batches)} batches sequentially"
)
batch_results = []
for batch in batches:
batch_results.append(
await embedding_function(batch, prefix=prefix, user=user)
)
# Flatten results
embeddings = []

View file

@ -248,6 +248,7 @@ async def get_status(request: Request):
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"ENABLE_ASYNC_EMBEDDING": request.app.state.config.ENABLE_ASYNC_EMBEDDING,
}
@ -258,6 +259,7 @@ async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"ENABLE_ASYNC_EMBEDDING": request.app.state.config.ENABLE_ASYNC_EMBEDDING,
"openai_config": {
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
"key": request.app.state.config.RAG_OPENAI_API_KEY,
@ -297,6 +299,7 @@ class EmbeddingModelUpdateForm(BaseModel):
embedding_engine: str
embedding_model: str
embedding_batch_size: Optional[int] = 1
ENABLE_ASYNC_EMBEDDING: Optional[bool] = True
@router.post("/embedding/update")
@ -358,6 +361,10 @@ async def update_embedding_config(
form_data.embedding_batch_size
)
request.app.state.config.ENABLE_ASYNC_EMBEDDING = (
form_data.enable_async_embedding
)
request.app.state.ef = get_ef(
request.app.state.config.RAG_EMBEDDING_ENGINE,
request.app.state.config.RAG_EMBEDDING_MODEL,
@ -391,6 +398,7 @@ async def update_embedding_config(
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
enable_async=request.app.state.config.ENABLE_ASYNC_EMBEDDING,
)
return {
@ -398,6 +406,7 @@ async def update_embedding_config(
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"ENABLE_ASYNC_EMBEDDING": request.app.state.config.ENABLE_ASYNC_EMBEDDING,
"openai_config": {
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
"key": request.app.state.config.RAG_OPENAI_API_KEY,

View file

@ -41,6 +41,8 @@
let embeddingEngine = '';
let embeddingModel = '';
let embeddingBatchSize = 1;
let ENABLE_ASYNC_EMBEDDING = true;
let rerankingModel = '';
let OpenAIUrl = '';
@ -105,6 +107,7 @@
embedding_engine: embeddingEngine,
embedding_model: embeddingModel,
embedding_batch_size: embeddingBatchSize,
ENABLE_ASYNC_EMBEDDING: ENABLE_ASYNC_EMBEDDING,
ollama_config: {
key: OllamaKey,
url: OllamaUrl
@ -237,6 +240,7 @@
embeddingEngine = embeddingConfig.embedding_engine;
embeddingModel = embeddingConfig.embedding_model;
embeddingBatchSize = embeddingConfig.embedding_batch_size ?? 1;
ENABLE_ASYNC_EMBEDDING = embeddingConfig.ENABLE_ASYNC_EMBEDDING ?? true;
OpenAIKey = embeddingConfig.openai_config.key;
OpenAIUrl = embeddingConfig.openai_config.url;
@ -927,6 +931,22 @@
/>
</div>
</div>
<div class=" mb-2.5 flex w-full justify-between">
<div class="self-center text-xs font-medium">
<Tooltip
content={$i18n.t(
'Runs embedding tasks concurrently to speed up processing. Turn off if rate limits become an issue.'
)}
placement="top-start"
>
{$i18n.t('Async Embedding Processing')}
</Tooltip>
</div>
<div class="flex items-center relative">
<Switch bind:state={ENABLE_ASYNC_EMBEDDING} />
</div>
</div>
{/if}
</div>